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Chapter 1

Raison d’être1

1.1 Code as recipes, code as inspiration, and

the joy of puzzles as a defense against

creeping nihilism

The exponential rise of computing power has been unprecedented in hu-
man history: there has been no other advancement so significant and brief,
whether in food production, gasoline efficiency of cars, or survival rates from
medical procedures. This tremendous shift has left programming as the lin-
gua franca2 of our age, the universal language that joins all fields of study
in our era. Whether one works in social sciences, statistics, or literature, the
word “algorithm” is increasingly prevalent (e.g., in analyzing human behav-
ior through computer-monitored reaction experiments, estimating posterior
distributions through MCMC, or analyzing word usage patterns to determine
authorship, respectively).

However, in spite of this shift toward computer science, the increasing
interest in our computational world is increasingly focused on a superficial
flavor of software engineering, i.e., grabbing up existing packages and code
snippets from online search engines and applying them to data. The ease
with which software is copied and transferred through the internet has greatly
facilitated cross-pollination of ideas, but it has also yielded an apparent game-

1French: “reason to be”, literally the reason for existing
2A Latin expression referring to French as the common language of the era, here applied

to C and C++; in other words, clear as mud.

9



10 CHAPTER 1. RAISON D’ÊTRE

theoretic advantage to this superficial approach to computation: if only one
person in the world need solve something for the rest of us to benefit, then
we might all decide to sit back and wait for someone else to solve whatever
puzzle we’re working on3.

Thus, although the the democratization of computing has certainly pro-
duced greater exposure to computers, it could be argued that in many ways
it has actually led to a more shallow appreciation for the depth and beauty
of the magic tricks that make faster, bigger, and better computing possible;
the underlying algorithms and techniques are seen as commodities, things to
be invented once and then shared, and even scientists increasingly see them-
selves as consumers of tools rather than creators. This has corresponded with
a rise in fatalism in computing, an idea that not only will someone else deliver
us, but that it is even pointless for us to try, that of course there is some-
thing better out there already or that even if we created something new, that
nobody would care or else someone else would surely unseat us before long.
This creeping nihilism4 has penetrated deep into the collective unconscious
of modern computer science, permeating even the elite scientists in industry
and academics: even highly qualified experts on online question-and-answer
platforms routinely answer with deflections, asking why you might want to
do something challenging or suggesting an existing software package5.

While caution does represent good engineering practice (invent an well-
tested, interchangeable widget once, and then use it again and again), it
does nothing to help us invent something the first time6. When we think of

3In economics, this paradox is called “the tragedy of the commons”: If each family is
able to graze one sheep per day on the “commons” (the grassy area shared by those in the
village), the grass will not be trampled into mud and every family will feed enough livestock
to survive. However, as a rational individual, you may feel convinced that, because all
other families follow the one sheep per day limit, you alone could graze two sheep per
day. Adding in one more sheep per day would likely not damage the grass but would be
enough to substantially improve your family’s production. But every family may observe
this symmetrically, and so each will bring two sheep per day, which will trample the grass,
leaving the entire village, you included, without feed for your livestock.

4From the Latin “nihil” (nothing), so nihilism is literally “nothingism”, it is essentially
an attitude that nothing has meaning and that everything is valueless.

5“Have you ever heard of boost? Why don’t you just use boost? boost boost, boost
boost boost. . . ”

6Tools can be quite useful, but do not simply copy everything without ever bothering to
learn or try yourself. Shameless copying is how karaoke tragedies like Star Wars Episode
7 get made7.

7“Did I ever tell you of the tragedy of Episode 7?”
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inventing something for the first time, we often think of the things that have
already been done, about classic algorithms and their creators, some quaint
event from a sepia-drenched time before. But we go through the same process
of ex nihilo8 creation whenever we decide to try to go further than what is
known today9.

Learning to invent something the first time is a tricky business; invention
is not about memorization, it is about creativity, about immersing ourselves
in a problem and seeing what we can come up with. It is disciplined but
playful. It is also clear why even experts can be wary of terra incognita10:
all the accumulated knowledge of an expert may prove useless against a new
puzzle11. Furthermore, if you are primarily motivated by external valida-
tion, why work hard to diminish your admiring audience as as you climb to
more and more rarefied heights? The answer is clear: because everything
worthwhile has always happened in some frontier or other.

This book can be seen as a collection of recipes for improving code per-
formance. But I would prefer it be seen as something more, as a collection
of examples with which we can hone our adventurous, frontier spirits. The
examples are also not meant to be the final word on the best or fastest ways
to solve each puzzle presented; instead, they only pull us down the rabbit
hole and give us a brief look around. It is not the recipes here that matter,
it is the rabbit hole itself. It is not about a particular solution as much as
it’s about the joy of the game, the fun in wandering around that precious
frontier that goes on forever.

You cannot look up tomorrow’s revolutionary ideas on Wikipedia. Some-
one needs to create them. Maybe you.

8“From nothing”, i.e., working from scratch
9Legend holds that the pillars at the Straight of Gibraltar were once inscribed with

“NON PLUS ULTRA”, meaning “nothing further beyond”, a landmark indicating the
boundary of the world, beyond which was assumed to only be dangerous ocean and the
monsters beneath. The Holy Roman Emperor and King of Spain Charles V, during whose
rule colonies in the Americas were brought under unified control, adopted the opposing
motto “Plus Ultra”.

10Latin: “unknown lands”
11As science fiction writer Arthur C. Clarke once put it: “If an elderly but distinguished

scientist says that something is possible, he is almost certainly right; but if he says that
it is impossible, he is very probably wrong.” For most of human history, a sub-5-minute
mile was unthinkable, and now it is routine for elite athletes.
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1.2 The scientist as an alpinist

Ask yourself this: Why do people climb mountains? Why do they leave their
safe, warm beds and deliberately seek out places that are cold, dangerous,
remote, and without help? There are few extremely rich mountain climbers,
so it cannot simply be for pursuit of material wealth. And even though
climbers may be recorded in the history books, they are less famous than
politicians, musicians, entrepreneurs, or football stars.

Instead, alpinists are motivated by the challenge itself, by the fact that
no other person has stood on a particular peak or climbed a particular wall.
They are focused on the struggle trying to reach it, by the fact that, in spite
of what we may think, not everything has been done; there are frontiers
everywhere if we look closely and, if we are lucky, we might be the first and
last to touch a particular frontier12. Like the great mountaineers, explorers,
artists, and others who have come before us, we are motivated by curiosity
and a thirst for adventure and novelty13.

The motivation driving scientists is essentially the same. We aren’t driven
solely by pursuit of money14, degrees, titles, and advancement, but by the
thrill of finding or building something new– however small– that has never
been seen by any person in the history of human existence, to stand on that
mountain for the first time. That joy of discovery is one of the very few
things that cannot be bought and sold, and once you have a piece of it, it is
yours forever16. You do not have to be seen climbing a mountain or creating
a beautiful piece of code to be able to appreciate the view.

12By definition, once it has been reached, it is no longer pure frontier.
13Van Gogh was a commercial failure as an artist. Mozart died poor and was buried in

a mass grave. Grigori Perelman ultimately rejected the adulation of his peers and did not
go collect his $1 million prize.

14This is not to say that you should take your finances for granted nor deliberately
starve yourself (a well-fed computer scientist is a productive computer scientist!). But
this does not mean everything needs to be monetized15. In our modern material society,
simply take some time to reflect on what Socrates said about virtue and money: “Virtue
does not come from wealth, but wealth, and every other good thing which men have comes
from virtue.”

15Khaaaan [Academyyyyy]!
16And even if you are not the first up a particular mountain, admiring the view and

breathing the thin air is still an amazing feeling.
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1.3 Top-down learning

This book is constructed in a “top-down” style17: we will start with a prob-
lem, construct the simplest naive solution, and then iteratively cut away at
it until we arrive at a very efficient implementation.

There are many reasons for this approach: 1, it is more motivating to
start by knowing why you would like to solve a problem. 2, this book exists
to help you learn how to solve problems, how to climb mountains, rather
showing you a photograph of the view from the top. And 3, it is designed
so that everyone can participate. It is withholding to simply show someone
the mountain top without any discussion of how to climb (this is reminiscent
of scientists discussing in jargon rather than starting in intuitive terms– it
discourages those who are not already familiar with the subject at hand).
This is, unfortunately, ubiquitous in modern science18. This is an important
lesson for you once you develop your talents and become stronger scientists.
There is a nice challenge in itself to empathizing with those who do not yet
understand and guiding them up the mountain19. We will climb together as
a team, and we will be able to climb higher because we do.

Questions

1. [Level 1] How are scientists like adventurers?

2. [Level 2] How does the tragedy of the commons contribute to nihilistic
culture in computer science?

3. [Level 3] Read (http://www.newyorker.com/archive/2006/04/10/
060410fi_fiction) or listen to (http://downloads.newyorker.com/
mp3/fiction/101217_fiction_ozick.mp3) “In the Reign of Harad

17This resembles the computer science notion of “lazy” computation.
18The average scientific publication is opaque and can be difficult to understand even

by experts in a nearby field.
19There was a study done where they showed a young child a box of pencils, emptied

out the pencils, and then filled the box with candy and re-closed. Then another child is
invited into the room, and they asked the first first child what the other child thinks is
in the box. Even though the box now has candy and not pencils in it, it is the cleverest
children who answer, “Pencils” because they know enough be able to empathize with the
ignorance of the other child.

http://www.newyorker.com/archive/2006/04/10/060410fi_fiction
http://www.newyorker.com/archive/2006/04/10/060410fi_fiction
http://downloads.newyorker.com/mp3/fiction/101217_fiction_ozick.mp3
http://downloads.newyorker.com/mp3/fiction/101217_fiction_ozick.mp3
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IV” by Steven Millhauser. How does the story relate to the strug-
gles and rewards of scientific research? Who are some scientists whose
lives parallel that of the maker of miniatures?



Chapter 2

Why efficiency matters

2.1 Do we live in a post-optimization age?

Clearly we are interested in the challenge of solving problems faster by using
more clever tricks (why else would we be writing / reading this book?); how-
ever, let’s start by challenging that worldview. Perhaps everything is already
“fast enough”. It is certainly not an unpopular idea that things are now fast
enough, that we have good enough compilers, that we have fast hardware,
etc. Python, R, and other high-level languages are often fast enough and are
quite easy to use, and that obsessing over efficiency in languages like C is
an anachronism, something to be relegated to the fluorescent lighting of a
basement that smells of pizza boxes and vaporized solder. So let us begin by
seriously considering that argument: do we really live in a post-optimization
age1?

First, let’s consider arguments as to why optimization is no longer rele-
vant. One reasonable point in this vein is that hardware, specifically CPUs,
continue to get faster and faster. Decades of “Moore’s law”2 have left us
spoiled, insouciantly anticipating further exponential growth. Faster hard-
ware, it could be argued, would render obsessively optimized code unnec-
essary; rather than obsessing about performance now in order to reduce
runtime, one could simply upgrade to better hardware and achieve the same

1People increasingly chatter about living in a post-[anything] age, so I suppose it was
only a matter of time before that “anything” grew to include optimization as well.

2The roughly true conjecture that the number of transistors embedded on a CPU will
grow exponentially with time

15
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decrease in runtime3.

There are several holes in the argument that faster hardware makes code
optimization obsolete. A first counterpoint is that humans are naturally
competitive4, and so the availability of higher-performance hardware will
not confer an advantage to us alone, but also to those competing with us.
A second counterpoint is the fact that Moore’s law has been slowing. As
engineers have crammed more and more transistors onto a CPU, the physical
dimensions of the processor have themselves become an issue. On one hand,
keeping the processor size the same and using smaller transistors shrinks the
size of insulators, permitting greater parasitic capacitance and even quantum
tunneling between disconnected wires. On the other hand, physically larger
processors experience delays while transmitting information because modern
clock speeds (e.g., in the GHz range) can oscillate many times before the
speed of light is able to propagate a short distance. While people have been
predicting the end of Moore’s law for a few years now, the advances that
have extended its life come at greater complexity and greater cost, and so it
is not likely to continue in the same manner. This can already seen with chip
makers moving to multicore models rather than focusing on improved clock
speed. Multicore processors simplify some issues of the propagation delay
compared to those that would attempt use a single core and a faster clock
speed.

Another reasonable point as to why optimization would no longer be
relevant is because we already solve most useful tasks fast enough5.

For instance, the world would keep spinning if a web page loads in 0.5
seconds rather than 0.1 seconds, and when we use a spreadsheet, perhaps we
won’t really notice the difference between a computation taking 0.1 seconds
or taking 0.01 seconds (even though a 10× speedup due to our software imple-

3This is called “throwing hardware at the problem”.
4In that we often compete for one another over resources that are finite or appear to

be finite
5There is a famous quote from computer scientist Donald Knuth, which says “Pre-

mature optimization is the root of all evil.” There is some wisdom in this– e.g., do not
try a fancy method if a simple method has not yet been tested– but the pregnant word
“premature” is the distinguishing feature. In fact, Knuth’s quote is in line with this
book’s top-down ideal, which focuses first on the problem and its simple solutions before
progressing to more sophisticated solutions.
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mentation would likely represent a quite significant achievement)6; however,
our views of which tasks are obscure and which tasks are useful are themselves
subconsciously limited by the tools that we have available. Tasks that would
once be labeled obscure are now thought of as quotidian8. Through that lens,
we can see that our demands as users tend to expand like a gas9. Users are
constantly more demanding when it comes to speed, power efficiency (i.e.,
battery life), and ability to perform more complex tasks effectively11.

6Henry David Thoreau once said that “We are in a great haste to construct a magnetic
telegraph from Maine to Texas; but Main and Texas, it may be, have nothing important to
communicate.” To non-scientists, an overzealous interest in speedups may feel something
like this.7

7You will, on occasion, even meet academics who, between pint glasses of what is no
doubt boxed wine, enjoy explaining that none of this really matters, that hardware design,
programming language choice, software optimization, and plenty of other things don’t
matter, and yadda yadda yadda that humanity would do perfectly fine if we established
a barter economy and went back to living in straw huts– and have you been to burning
man by the way? because at burning man, they have. . . ; however, when you ask, “Hey,
can I borrow your SR-71 supersonic jet, not the titanium-aluminum-vanadium alloy one,
but the one made out of wood and straw, can I borrow it?” they will without question
try to say that they left it in the pocket of another pair of pants and then try to quickly
change the subject without you noticing. Surprising no one.

8E.g., encryption is used in online shopping, real-time compression is used for video
chat, and voice recognition is used to track our identity when calling customer service.

9There is a great albeit apocryphal story about Bill Gates claiming that 650K of usable
RAM “ought to be enough for anybody”; however, Gates has since denied that this ever
happened. And would a billionaire philanthropist who also won the 1973 Wimbledon
tournament10 really need to lie to impress us?

10Not really
11For a large online retailer, even small delays in their webpage may actually translate

to millions of dollars in lost sales.12
12Once when I did some office work at a large investment bank during my early teenage

years, I expressed interest in the portfolio management algorithms, and was dismissed
“There are a bunch of egg heads who worry about that stuff”. I was advised to focus my
attention on dressing well, and I stopped going shortly after. During the 2008 financial
contraction, that investment bank disappeared in a matter of days. If you don’t obsess
about your job, someone else will. As William S. Burroughs put it, “This is a war universe.
War all the time. That is its nature. There may be other universes based on all sorts of
principles, but ours seems to be based on war and games.”
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2.2 When does efficiency matter?

There are several reasons to avidly pursue faster code, cases where our ap-
petite for performance is infinite and where payoffs for even moderate im-
provements are real:

Scale advantage: Some problems cannot be done halfway. For exam-
ple, internet search cannot be adequately implemented until you cross
a threshold of storing data from a large percentage of the internet (ide-
ally, all of it). A substantial speedup or memory savings can easily
mean the difference between being able to solve the problem and not13.

Speed advantage: In settings like high-throughput trading14 or game
engine design, a small speedup can mean a large, very valuable differ-
ence between you and a competitor.

Complexity advantage: Faster runtimes not only translate to better
automated trading speeds in investing or better frame rates in video
games; instead, it is often advantageous to exchange that runtime im-
provement for a greater model complexity (e.g., better prediction algo-
rithms in trading or a higher-quality, more life-like world in gaming).
Achieving a higher-quality result with the same runtime as a competi-
tor can offer a large advantage. For example, in cryptanalysis, the
difference in cracking an encrypted file in 1s (seconds) second rather
than in 10s may not be very useful, but the ability to crack the file
rather than not crack the file is everything15.

These are only a few categories and a few examples of where the quest
for efficiency is not only still relevant, but especially important today. As

13Implementing search on only a minuscule fraction of the internet or implementing a
social network that supports only a handful of users are both generally as useless as having
a fraction of the ingredients necessary to bake a cake.

14High-throughput trading is where investors (usually large firms) try to use a very
small edge in market information to buy or sell shares shortly before others. For example,
confirmed news stories about the death of a world leader can invite uncertainty and quickly
depress markets, and the first actor to sell shares and then re-buy them after the price
drops could earn a large profit while still owning all of their original shares. . . assuming
they correctly predicted the market.

15For tasks like cryptography and cryptanalysis, complexity advantage is closely inter-
twined with scale advantage, demonstrating the fuzzy boundary between the categories
itemized here.
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robotics and automation continue to proliferate in factories, warfare, com-
merce, etc., those who can most efficiently instruct the automated creations
will own the future.

But this quest for performance is not only competitive. The methods used
to speed up code are often pure puzzles that are interesting in their own right.
It is interesting to dig things open, to see how they work, and to think about
how we would design them differently (and the pros and cons of doing so).
These puzzles would fit just as well in a competitive military scenario (e.g.,
trying to break an opponents encryption before they break yours) as they
would fit a pure scientist working alone for education or enjoyment16. It is
an art.

2.3 All languages are not created equal17

Programming languages each have their advantages and disadvantages rel-
ative to others. Because they are very accessible, languages like Python

are often the most comfortable for new programmers18, and deviations into
C/C++ may be seen as excessive or even pedantic. For this reason, we should
genuinely ask ourselves, “Is it really worth using C/C++ anymore?” We will
directly test this in our first benchmark.

2.4 Measuring performance

There are many ways to measure performance: the big-oh20 runtime of an
algorithm; total number of operations required by an implementation of an
algorithm; the total number of multiply operations required by an algorithm
(in contrast with operations that have historically been cheaper, like addition,
bitwise and & and bitwise or |); the FLOPS (floating point operations per
second); etc.. Each of these measurement criteria has its pros and cons,

16Like a Swiss watchmaker working in a small alpine city and honing their craft
17“Some languages are more equal than others. . . ”
18Or perhaps their first programming language, also known as their “mother tongue”

or “Muttersprache” in German19

19Deutsch ist nicht meine Muttersprache.
20Also known as Landau notation.21
21“Landau system?!” “Landau isn’t a system. He’s a man.”
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but for our purposes, one measure reigns supreme: the real runtime of the
implementation22.

The reason why is simple: empirical runtime directly answers the question
“How fast can you do this?”24

There are different measures of empirical runtime, most notably “real”
runtime (also called “stopwatch” time or “wall clock” time) and “user” run-
time. Real runtime may include things like operating system overhead, while
user time measures the actual time the executable is occupying the CPU.
While this precision makes user time appealing, there are also two problems
this: The first problem with user time is the notion that because operations
like frequently allocating large blocks of memory (which can be costly for
the operating system if a contiguous block of memory is not available) may
be costly in practice, then that should be included in our evaluation (even if
some of the delay is caused by the operating system). The second problem
with user time is its response to parallelism: if you use multithreading or

22We will focus only on what we can directly measure. “If it is ‘truth’, rather than
measurable ‘fact’, that you’re interested in, Dr. Tyree’s Philosophy class is right down the
hall.”23

23Do you understand this reference? Well then you could explain it to the other stu-
dents... If only you spoke Hovitos...

24Does this mean that things like big-oh runtime are useless? Not at all. But it does cast
some light on the distance between a good big-oh runtime and fast performance in practice.
For small problems, an algorithm ∈ O(n2) with a low runtime constant may outperform
an O(n log(n)) algorithm with a moderate runtime constant, showing the advantage of the
empirical performance over the big-oh runtime: “constants can kill you”. But the distance
between the big-oh runtime and the empirical real execution time also has benefits for the
big-oh runtime: real execution time can be highly dependent on the implementation, the
compiler, and the architecture that its run on. Operations that are fast on one CPU may
be slow on another. This is one of the great advantages of big-oh runtime: it is much more
agnostic as to which architecture you are running on25. Big-oh runtime (on the more
abstract extreme) and real execution time (on the practical extreme) offer complementary
types of information: if I were at the planning phase of a project, I would generally start
with algorithms that have a good big-oh runtime. But at the end of the project, real
execution time is the thing that will really impress other people, especially those who are
not computer scientists.

25When you allow for very different architectures (i.e., not only Motorolla 68000 vs.
Intel x86-64, but also different computation models, e.g., the “random access computation
model”, the “uniform decision tree computation model”, or the non-deterministic Turing
machine), solving the same problem on those architectures can change even the big-oh
computational complexities dramatically. Most modern computers closely resemble the
random access computation model, where memory is like a big array that can be accessed
by its integer indices.
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the GPU, then the algorithm can be distributed over multiple cores, and in
some cases, can receive a considerable speedup in the real runtime; however,
the user time will count the total time that the process receives attention,
meaning that two cores running perfectly in parallel (with no overhead) will
result in a real time of x but a user time of 2x.

Although UNIX and Linux have built-in commands for measuring the
runtime of an executable, we would prefer to precisely target the code that
we’re interested in. For this reason, we will create a Clock class in C++, which
we can use like a stopwatch to measure elapsed time (Listing 2.1).

Using this class, we will compare the runtime of a simple task in Python

and C++. For this first benchmark, we will use a basic for loop to sum the
integers 0 + 1 + 2 + · · · + 224 − 1. In Python we will use the time.time()

function (Listing 2.2), and in C++ we will use the Clock class to measure
elapsed time (Listing 2.3).

We will start by turning off other programs (e.g., the music player, the
video player, and the web browser26) and running each piece of benchmark
code and recording its runtime. It is important to run only on benchmark at
a time; running them simultaneously will force them to compete for resources
and will have undesirable effects on memory and cache performance.

When we run our python code with python [filename.py]. It took
roughly 2.151s (we will round to four significant figures). The C++, compiled
with g++ -std=c++11 [filename.cpp]27 takes 0.06690s. This is a stark
difference in the runtimes! By typing echo "2.151 / 0.0669" | bc -l,
we can see that this is a > 30× speedup.

However, the C++ can be made even faster still by using compiler op-
timizations. We will compile again, this time using g++ -std=c++11 -O3

[filename.cpp]. The -O3 means we are using the third-level optimizations;
-O, -O2 would perform similar optimizations, but a subset of those we will
have available from -O3. Compiler optimizations are of critical importance,
and will be discussed in greater detail later.

26Because we now live in a time when it is common to stream music and videos 24/7,
closing all other programs while benchmarking can feel like quite a heavy cost. This
is one reason to have multiple computers, at least one for benchmarking (e.g., a simple
Linux server that you ssh into) and one for receiving your daily “infotainment” while your
benchmarks are running.

27-std=c++11 allows us to make use of the C++11 language extensions. Some of these
will be crucial to achieving better performance later on in this book.
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Listing 2.1: Clock.hpp. The Clock class can be used to measure elapsed
time. The member function tick() starts the timer, the function tock()

returns the current elapsed time in seconds, and the function ptock() prints
the current elapsed time in seconds. On construction, the timer is started.
Because the start time is marked by simply writing to a float, the impact
of this measurement on the actual runtime should be minor.

#ifndef _CLOCK_HPP

#define _CLOCK_HPP

#include <iostream>

#include <iomanip>

#include <chrono>

class Clock {

protected:

std::chrono::steady_clock::time_point start_time;

public:

Clock() {

tick();

}

void tick() {

start_time = std::chrono::steady_clock::now();

}

float tock() {

std::chrono::steady_clock::time_point end_time =

std::chrono::steady_clock::now();

return

float(std::chrono::duration_cast<std::chrono::microseconds>(end_time

- start_time).count()) / 1e6f;

}

// Print elapsed time with newline

void ptock() {

float elapsed = tock();

std::cout << "Took " << elapsed << " seconds" << std::endl;

}

};

#endif
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Listing 2.2: A for loop in Python. The loop sums the first 224 integers.

from time import time

N=2**24

t1=time()

tot = 0.0

for i in xrange(N):

tot += i

t2=time()

print tot

print "Took", t2-t1

Listing 2.3: A for loop in C++. The loop sums the first 224 integers.

#include "../Clock.hpp"

const unsigned int N=1<<24;

int main() {

Clock c;

double tot=0.0;

for (unsigned int i=0; i<N; ++i)

tot += i;

c.ptock();

return 0;

}
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2.5 Beware of dead code

When we rerun the C++ benchmark with -O3 optimizations, something curi-
ous happens: the program takes 0s to run! Now on one hand, this could be
a good sign; it could mean that the C++ code can simply be optimized to be
so fast that our clock, which uses float time units, is unable to measure it
without underflow28. But it could also be a sign that something is wrong29.
Whenever our results look too good, we should be skeptical30. The Python

program printed 1.40737479967e+14 as the result of the sum, so let’s check
and make sure that our C++ program produces the same result (Listing 2.4).
Note that our modified C++ program prints the result tot after the runtime
has been recorded. This is important, because printing to the screen can be
surprisingly costly31. When we time Listing 2.4 again with g++ -std=c++11

-O3, we get a mysteriously different result: it prints the same numerical re-
sult as the Python code (roughly 1.40737e+14 with the default std::cout

precision), but it now takes 0.02205s instead of the 0s we saw before; how-
ever, the 0s result was flawed (it wasn’t actually computing the sum), and
so this is our best result. It is a 3× speedup over the g++ without -O3 and
a 97× speedup over Python.

The reason behind this discrepancy is not only interesting, it is sobering.
One of the many optimizations performed by the g++ compiler is “dead code
elimination”. Dead code elimination automatically detects code where the
results are never used. For this reason, dead code can be safely trimmed
away without changing any measurable results of the program. This can, as
in this example, result in a benchmark that essentially does nothing (because
everything has been marked as dead code by the optimizing compiler and
removed). For this reason, we should be wary any time we see a runtime
drop to 0s32, because it may simply be the result of dead code elimination.
Compilers are always improving, but we should be wary of anything that

28“Underflow” is the term for a type of numerical error where floating point values (e.g.,
either float or double) are so close to zero that they can no longer store such a small
value and so they simply become zero instead.

29Have we “delved too greedily and too deep” with our optimizations?
30Our minds are trained to see what we want to see, so we should do our best to

continually swim against that current. This is true in both science and life.
31Printing to the screen can be quite useful, but printing too often is frequently derided

by some purists as “operator entertainment” because it may clutter the program and be
detrimental to runtime.

32As Bram Stoker, the author of Dracula, once wrote, “The dead travel fast.”
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Listing 2.4: Updated version of Listing 2.3. This updated version uses the
variable tot after computing the sum; therefore, the computation of the sum
will no longer be silenced by dead code elimination.

#include "../Clock.hpp"

const unsigned int N=1<<24;

int main() {

Clock c;

double tot=0.0;

for (unsigned int i=0; i<N; ++i)

tot += i;

c.ptock();

std::cout << tot << std::endl;

return 0;

}

looks too good to be true.

2.6 Why Python is slower than C++

Python is a very flexible language (e.g., without any special preparations,
a function be called one time with a list as the argument, a second time
with a class object as the argument, and a third time with a class type
as the argument). But as we’ve observed, this flexibility comes at a price:
less dynamic, compiled languages like Fortran, C, and C++ can exploit their
lack of flexibility to rewrite the code in an equivalent but faster form. The
fact that these compiled languages are so intertwined with the hardware
is precisely what makes them so useful for high-performance tasks; the C

programming language has been referred to as “portable assembly”33, and
we can use this to write C and C++ code that anticipate what kind of assembly
will be created in order to improve performance. This is one of the reasons
why C++ was chosen for this book34.

33I.e., architecture agnostic assembly
34A professor, a smart and witty guy who was adjunct from IBM and taught for fun,

once said that when you have one hand on the hardware and one hand on the software,
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Within each iteration of the for loop, Python may need to look up the
variable tot again (possibly even using the string “tot” to look it up)35, while
in C++, it will refer to a specific address in RAM, and in optimized C++ code,
we can count on the compiler to optimize it to refer to a single register on
the computer36. For this reason, languages like Python can be slow on loops
with many iterations and with simple tasks inside the loop; the language
overhead starts to dwarf the cost of the actual work being done.

This is not just said to disparage Python; in fact, it is a great practice
to implement anything complicated in organized Python to ensure it works
before implementing in a language like C++37. Instead, looking into this
performance difference between Python and C++ sheds a light on the pros
and cons of each language. Understanding the things that make Python

slower than C++ can help us to understand how to make faster C++ code,
whether through compiler optimizations or through our own design.

And consider: even if the Python code were just as fast, it would be
going through an automated version of the same thought processes we just
employed. If there ever is such a high-performance Python interpreter, we
could simply use it without interest in how it works, but this would be unwise
as well as boring. When possible, we should seek to be the one who knows
how this better Python interpreter was created, and how we can write a
better one. This is far more interesting than being someone who simply uses
it, a means to be an artist rather than just a collector of finery38.

you can get a better grip and make it harder for someone from the business end of things
to pull you out of your job.

35Details like this will depend on the language used and the quality of the interpreter.
36By using two registers, one for the loop counter i and one for the total tot, it is

possible to run the entire loop without ever reading from or writing to RAM. Reading
from and writing to RAM would be considerably slower than registers to access.

37See Donald Knuth, we heard you!
38A student once told me that he didn’t want to use C++ because the proprietary Visual

Studio compilers, on which he wrote .NET code, were superior because they were “managed
code”. “Managed code” was essentially a clever marketing term for proprietary, closed-
source code without which the student could no longer work. If Microsoft had decided to
charge $1,000 / year to use the .NET framework, this student would have been trapped.
It is shocking when this kind of dependency so successfully infiltrates the hacker / DIY
culture of computer science. As Chuck Palahniuk wrote in Fight Club, “Lord knows what
they charged. It was beautiful. We were selling... their own fat @$&es back to them.”
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Questions

1. [Level 1] Come up with 3 applied settings not listed here why a speed-
up matters.

2. [Level 2] Repeat 32 repetitions of the benchmarks in Listing 2.2 and
2.4 on your computer (using -O3 to compile the C++ code). Record
the average runtimes. Now repeat these benchmarks again, but while
streaming some videos (on several multiple tabs) on the Tor browser.
How do the average runtimes change?

3. [Level 3] What happens to the Python runtime when you change the
line tot=0.0 to tot=0? Why? What happens to the C++ runtime
(optimized with -O3) when you change the line double tot=0.0 to
unsigned long tot=0? Can you think of any reasons why this would
be the case?
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Chapter 3

Benchmarking

3.1 Treating runtime as a stochastic process

As you have probably already observed, the runtimes you measure will vary
slightly as you repeatedly benchmark your code. This is perfectly natural:
other programs will be running (some more extraneous1 and some more basic,
like the operating system doing chores to the mouse and GUI running2), and
they may stochastically make more or less demand on the hardware (e.g., a
garbage collector may stay silent for a long time and then suddenly require
a lot of CPU time and memory in a short burst; a program benchmarked at
the same time may look significantly slower).

For this reason, we usually treat benchmarks as a stochastic process3;
therefore, it is customary to take repeated measurements of performance
and compare the averages between two implementations. By taking averages
from a larger and larger number of experimental replicates, more and more
subtle differences can be detected. In this book, we will assume that 1024
replicates are sufficient.

You will also find that, if you have been running many memory-intensive
programs that caused the operating system to use the swap space4, even

1Did you remember to close your web browser before benchmarking?
2For real perfectionists, the best way to benchmark is to drop out of the X server and

run in “single user” mode. This can actually increase performance, decrease variability
between repeated benchmarks, and help you detect more subtle differences in performance.

3i.e., a collection of measurements taken in the presence of random variability
4Disk space masquerading as slow RAM when the user tries to use more RAM than is

available

29
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Listing 3.1: Incorrect swapping of the values x and y. The value x is erased
irrecoverably, and therefore is no longer available to set the new value of y.

void swap(int & x, int & y) {

x = y;

y = x; // Wrong: x was already set to y, so both

// values will have the old value of y

}

after you have stopped these programs, your benchmarks may run slower.
The same is sometimes true for CPU-intensive programs, some of which
lazily fetch libraries and spawn processes when launched, but not terminate
those processes after the program is closed5. For this reason, it can be good
practice to perform a “cold”6 boot before benchmarking.

3.2 The XOR swap trick

A classic riddle from computer science goes like this: you have binary values
(e.g., integers), which you would like to swap. That is, after swapping,
the new value of x should be y and the new value of y should be x. A
naive programmer may write the simple, incorrect code in Listing 3.1. An
alternative would be to use temporary variables named old x and old y

(Listing 3.2); however, this requires two new variables (which could require
two registers on the processor, meaning that if other variables were already
stored in registers, they may need to be written back to RAM so that two
registers are now free). Also, the code in Listing 3.2 requires four copy
operations. Now the question is, can we do better? And how few registers
and operations do we need?

One way forward is clear: we can get away with using only a single
temporary variable. Consider the incorrect swapping code from Listing 3.1;
the value of x was irrecoverably lost, but not the value of y. So let’s simply
use a temporary value to save the value of x. Listing 3.3 does this, using
only one temporary value and only three copy operations.

5One reason for doing this is that it can make it faster to launch the program the
second time.

6i.e., fresh
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Listing 3.2: Correct swapping of the values x and y via two temporary vari-
ables.

void swap(int & x, int & y) {

int old_x = x;

int old_y = y;

x = old_y;

y = old_x;

}

Listing 3.3: Correct swapping of the values x and y via one temporary vari-
able.

void swap(int & x, int & y) {

int old_x = x;

x = y;

y = old_x;

}

Now we ask ourselves if we can do any better. If you’re a waiter carrying
two plates of food, linguine in your left hand and ravioli in your right, it
feels intuitive that to swap them (so the ravioli is now in your left hand
and the linguine is now in your right), you would need to sit one plate
down temporarily (this is equivalent to the single temporary store we used
in Listing 3.3). But with binary values, it turns out we can do better.

Consider two single-bit values, a and b. If someone told you only the
value of a but not the value of b, it would not be possible to infer the value
of b; it could freely be either value ∈ {0, 1}. But if someone also told you
whether both a,b are true, both a,b are false, or whether exactly one of a,b
is true, then you could figure out the value of b. For example, if you know
a=0 and you know that exactly one of a,b is true, then you know that b=1

(i.e., b is true).

The operation that tells you about both a,b in this way is called “XOR”,
an abbreviation of “exclusive or”. In C++ it is written as a^b and is equivalent
to (a || b) && !(a && b), meaning either a or b should be true, but not
both. Amazingly, XOR does not only allow us to recover the value of b

using the value of a and a^b; the method for recovering b is itself the XOR
operation: b == (a^b)^a. Also, note that XOR is a symmetric operator, so
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Listing 3.4: XOR swapping of two boolean values x and y with no temporary
variables.

void swap(bool & x, bool & y) {

x = x^y;

y = y^x; // y has now been XORed with x twice; y=old_x

x = x^y; // x has now been XORed with y twice; x=old_y

// The values have been swapped

}

Listing 3.5: XOR swapping of two boolean values x and y with no temporary
variables.

void swap(int & x, int & y) {

x = x^y;

y = y^x;

x = x^y;

}

it does not matter whether we perform a^b or b^a.
What does this have to do with swapping values? Well, we can swap two

int values a and b without any temporary storage (Listing 3.4). Consider
that an integer is simply a block of boolean values. We can therefore do the
same thing with a full integer, swapping all bitwise values simultaneously
using the bitwise XOR operator (again, ^), as shown in Listing 3.57.

Now we would like to ask ourselves, is this actually faster? XOR oper-
ations are cheap to implement in circuitry (more efficient than operations
like +, which needs to consider carry operations between bits). Is three XOR
operations better than three copies using one temporary value?

Let’s test it. One swap operation would be far too fast to time accurately
(and, in some circumstances, could even be optimized out by a clever com-
piler by simply exchanging the variable names at compile time). For this
reason, we will perform many swap operations. Listing 3.6 performs these
by copying and using a temporary value, whereas Listing 3.7 does this using
the XOR swapping trick and uses no temporary values. There are arguments
to be made on either side: the fact that the XOR method does not need a

7I do not know how the waiter would XOR the linguine and ravioli together, but if you
ever see that happen, I’d like to know.
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Listing 3.6: Copy swap benchmark. Several swaps are performed by copying
to a temporary value.

#include "../Clock.hpp"

#include <iostream>

int main() {

unsigned long N = 1<<24;

unsigned long*x = new unsigned long[N];

unsigned long*y = new unsigned long[N];

for (unsigned long i=0; i<N; ++i) {

x[i] = i;

y[i] = N-i;

}

Clock c;

unsigned long temp;

for (unsigned long i=0; i<N; ++i) {

temp = x[i];

x[i] = y[i];

y[i] = temp;

}

c.ptock();

return 0;

}

temporary value could be useful, but it does so by slightly increasing the
complexity of the operations performed.

To take into account stochasticity, we will script with bash and awk to
will compute the average runtime over 1024 replicate trials (Listing 3.8). We
can run the same script again using for the XOR swap benchmark by making
a few changes8.

When we benchmark both the copy swap and the XOR swap in this
manner, we see our results (Table 3.1). From the results, the copy-based

8Whenever you copy code in this way, make sure that you did not leave a little of the
old code behind. For example, perhaps you replaced most instances of “copy” with “xor”,
but forgot one. This is a very common source of problems, and so it is advisable that you
create your own general script for benchmarking a generic .cpp file argument.
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Listing 3.7: XOR swap benchmark. Several swaps are performed using XOR
without any temporary values.

#include "../Clock.hpp"

#include <iostream>

int main() {

const unsigned long N = 1<<24;

unsigned long*x = new unsigned long[N];

unsigned long*y = new unsigned long[N];

for (unsigned long i=0; i<N; ++i) {

x[i] = i;

y[i] = N-i;

}

Clock c;

for (unsigned long i=0; i<N; ++i) {

x[i] ^= y[i];

y[i] ^= x[i];

x[i] ^= y[i];

}

c.ptock();

return 0;

}
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Listing 3.8: Benchmarking Listing 3.6 over 1024 replicates. This bash script
takes care to save the runtimes before computing the average so that awk is
not running at the same time as the benchmarks.

# compile:

g++ -std=c++11 copy-swap.cpp -o copy

# save 1024 replicate runtimes:

for ((i=0; i<1024; ++i))

do

./xor

done > /tmp/copy

# Compute average runtime:

cat /tmp/copy | awk ’BEGIN {tot=0;} // {tot += $2} END {print tot/NR;}’

swap appears much faster9. It can also be useful to look at the minimum
and maximum runtimes (or the 95 percentile runtimes) in order to add error
bars to our measurements, or to plot and overlay histograms of the runtimes
of the different methods. However, with 1024 replicates (and therefore, an
expectation that the variability of the average will not be very large), we will
trust that a nearly 2× speedup is not simply the result of random variability.
Thus we declare the copy swap the winner of this benchmark; in this case, it
appears the simplest methods are the best11.

What happens when we turn on compiler optimizations? Let’s run it
again and find out. Here we will keep everything in our benchmark script the
same with the exception of adding the -O3 flag when running g++. Interest-
ingly, in this case, both methods perform nearly identically well (Table 3.2).

9Note that we have not proven, strictly speaking, that it is significantly faster. To
do that, we would need an estimate of the variability as well. But we do know that the
variability of an average of n independent and identically distributed replicate trials should
shrink as n grows large10.

10This is basically the law of large numbers, but it can also be seen in a general form
using the central limit theorem.

11If we were in Brooklyn or Seattle, we would then immediately start re-branding the
basic copy swap as “old world style”, “handmade”, and, of course, “artisinal”, and attach
a slogan like, “Sometimes the old ways [pauses to turn and slowly smile at camera] are
the best.”12.

12With the exception of bubble sort... and thalidomide... Basically, be wary of anything
from before 1960. But yeah, otherwise, the old ways are the best.



36 CHAPTER 3. BENCHMARKING

Copy swap XOR swap
Average runtime (seconds) 0.07542 0.1268

Table 3.1: Swap runtimes without compiler optimizations. Runtimes are
reported to four significant figures. The copy-based method appears faster
on average than the XOR-based method.

Copy swap XOR swap
Average runtime (seconds) 0.03020 0.03034

Table 3.2: Swap runtimes with compiler optimizations. Runtimes are re-
ported to four significant figures. Both methods appear to perform roughly
the same.

So while the XOR method does not seem to be worth the effort in this case,
it is promising for cases where we would run out of registers otherwise.

3.3 Looking into the assembly code

Perhaps the compiler is so smart that it detects that we’re swapping with
XOR and therefore the -O3 optimizations simply replace our XOR code with
code that uses a temporary value to perform the copy swap? This is difficult
to know because compilers are still somewhat of a black box to us, and they
are updated all the time.

But we can actually test this by recompiling to assembly code rather than
compiling to an executable: g++ -std=c++11 xor-swap.cpp -O3 -S. This
command produces a new file, xor-swap.s, and when we read it, we can find
some XOR operations, whereas we see no such operations when we generate
the corresponding file copy-swap.s. Interestingly, what we see is actually
the opposite: the compiler is actually converting the copy-based swap to an
xor-based swap (we see no XOR operations in the assembly file copy-swap.s
after running g++ -std=c++11 copy-swap.cpp -S but do see them when in
the assembly file after running g++ -std=c++11 copy-swap.cpp -O3 -S. In
fact, the assembly files produced by the copy and XOR methods with -O3

are very similar.
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3.4 Why does the compiler not remove our

benchmarks as dead code?

In previous benchmarks, we saw examples where a result was computed but
where the result was never used, and that this sometimes yielded a runtime of
0s. This was because the compiler eliminated basically the entire benchmark
as “dead code”. So this naturally gives rise to a question: why are our
benchmarks here not labeled dead code? After all, we never print the results
using std::cout.

This subtlety is because we are modifying pointers (this is how the arrays
are stored), and the compiler is not yet reliable to identify which pointers are
modifying something temporary (these modifications can be marked as dead
code if that temporary value has no subsequent dependencies) as opposed
to the pointers modifying something of great import (e.g., modifying global
variables or even more hacky practices13). Of course, in these benchmarks
we do no such thing, but the compiler is not smart enough to know for sure.
There are even cases where we do not modify any non-temporary values, but
where the compiler cannot know.

Generally this has to do with memory allocation and aliasing, which will
be discussed in greater detail in Chapter 11. But for now, we can safely
assume dead code elimination is not ruining our benchmark results by the
fact that these very elementary benchmarks have nonzero runtimes.

3.5 Quadratic vs. subquadratic sorting algo-

rithms

Here we will again test a simpler method against a more sophisticated coun-
terpart. In this case we will use a simple quadratic selection sort (List-
ing 3.9, improved in Listing 3.10) and compare it against a subquadratic
(i.e., O(n log(n))) merge sort implementation (Listing 3.11). Like with the
swapping question, we can imagine pros and cons to the various methods a
priori14: Selection sort will be quite simple to implement well in place15. But

13E.g., it may not be good practice, but one could directly modify the return value of
int main() by changing modifying its address via a pointer

14“From earlier”, referring here to our belief before we see evidence.
15An “in-place” method does not make allocations on the fly and only uses O(1) tempo-

rary storage; it simply operates directly on the memory provided and modifies it to produce
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on the other hand, merge sort is an O(n log(n)) algorithm, whereas selection
sort is ∈ O(n2). Of course, the answer here will be determined by the n, the
length of the list, being sorted; any constant advantage of the selection sort
implementation can be overcome by using a large enough n, because n2 will
eventually grow to overwhelm the constant.

Here we will make a two minor changes to our benchmarking methods:
we will use -O3 by default, and we will accept command line argument for
the length of the list so that we can appreciate the influence the size of the
list makes.

Listing 3.9: Selection sort implementation and benchmark. The array is
sorted by finding the smallest item in the full list, then finding the smallest
item in the remaining n−1 elements, then the smallest item in the remaining
n − 2 elements and so forth, for an overall runtime in O(

∑n
i=1 i) = O(n2).

Here, elements are swapped using std::swap, an implementation of the swap
algorithm used above, which is templated to accept generic types. This
selection sort implementation runs in place, meaning it directly modifies our
array rather than making a copy.

#include "../Clock.hpp"

#include <iostream>

void selection_sort(unsigned long*source, unsigned long n) {

for (unsigned long i=0; i<n; ++i)

for (unsigned long j=i+1; j<n; ++j)

if (source[j] < source[i])

std::swap(source[i], source[j]);

}

int main(int argc, char**argv) {

if (argc == 2) {

const unsigned long N = atoi(argv[1]);

unsigned long*x = new unsigned long[N];

for (unsigned long i=0; i<N; ++i)

x[i] = rand()%10000;

Clock c;

selection_sort(x, N);

the desired result. You will better understand the significance of in-place implementations
after Chapter 9, which discusses cache.
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c.ptock();

}

else

std::cerr << "Usage: sort <n>" << std::endl;

return 0;

}

Listing 3.10: Improved selection sort. By modifying a local variable, alias-
ing concerns (discussed in Chapters 10 and 11) are avoided, enabling better
compiler optimization.

#include "../Clock.hpp"

#include <iostream>

void selection_sort(unsigned long*source, unsigned long n) {

for (unsigned long i=0; i<n; ++i) {

unsigned long min_ind=i;

unsigned long min_val=source[i];

for (unsigned long j=i+1; j<n; ++j) {

const unsigned long source_j = source[j];

if (source_j < min_val) {

min_ind = j;

min_val = source_j;

}

}

std::swap(source[i], source[min_ind]);

}

}

int main(int argc, char**argv) {

if (argc == 2) {

const unsigned long N = atoi(argv[1]);

unsigned long*x = new unsigned long[N];

for (unsigned long i=0; i<N; ++i)

x[i] = rand()%10000;

Clock c;

selection_sort(x, N);

c.ptock();

}

else
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std::cerr << "Usage: sort <n>" << std::endl;

return 0;

}

Listing 3.11: Merge sort implementation and benchmark. The array is sorted
by splitting it in half, sorting the left and right halves, and then merging the
sorted results in O(n), creating a divide-and-conquer algorithm that runs
in O(n log(n)). When a base case list length n = 1 is detected, the list is
deemed already sorted (terminating further recursion). This implementation
does not sort in place, and thus needs to copy the sorted result back after
finishing.

#include "../Clock.hpp"

#include <iostream>

void merge_sort(unsigned long*source, unsigned long n) {

if (n == 1)

return;

unsigned long*source_2 = source + n/2;

merge_sort(source, n/2);

merge_sort(source_2, n-n/2);

unsigned long*buffer = new unsigned long[n];

// Merge sorted halves into buffer:

unsigned long i=0, j=0, buffer_ind=0;

while (i < n/2 && j < (n-n/2)) {

if (source[i] < source_2[j]) {

buffer[buffer_ind] = source[i];

++i;

}

else {

// In case of equality, order doesn’t matter, so use this case:

buffer[buffer_ind] = source_2[j];

++j;

}

++buffer_ind;

}

// Copy remaining values:

for (; i<n/2; ++i, ++buffer_ind)

buffer[buffer_ind] = source[i];

for (; j<n-n/2; ++j, ++buffer_ind)

buffer[buffer_ind] = source_2[j];
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// Copy back sorted list from buffer:

for (i=0; i<n; ++i)

source[i] = buffer[i];

delete[] buffer;

}

int main(int argc, char**argv) {

if (argc == 2) {

const unsigned long N = atoi(argv[1]);

unsigned long*x = new unsigned long[N];

for (unsigned long i=0; i<N; ++i)

x[i] = rand()%10000;

Clock c;

merge_sort(x, N);

c.ptock();

}

else

std::cerr << "Usage: sort <n>" << std::endl;

return 0;

}

Selection sort Selection sort (2) Merge sort
n = 16 4.375e-07 1.08301e-06 7.406e-06

n = 1024 0.0009152 0.0008235 0.0001358
n = 65536 2.063 1.609 0.008960

Table 3.3: Runtimes (in seconds) of selection sort (Listing 3.9), the modified
selection sort (Listing 3.10), and merge sort (Listing 3.11). Runtimes are
performed on arrays of different lengths n and reported to four significant
figures. For small arrays, both methods are efficient, but selection sort is
more than 10× faster (meaning it would could offer substantial savings if
many small lists were being sorted). For larger arrays, the advantage of
merge sort becomes apparent.

The merge sort implementation from Listing 3.11 does indeed perform
substantially better than the selection sort implementation on large prob-
lems, but is more than 10× slower on small problems (Table 3.3). A natural
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question arises: how can we achieve the qualities of selection sort for small
problems and the qualities of merge sort for larger problems? One way to
accomplish this is to modify our selection sort algorithm so that the base
case is no longer n = 1 (which we can ignore, as a one-element list has only
one possible ordering and is thus already sorted), and instead use a threshold
n ≤ K, at which point selection sort will be used to finish (Listing 3.12). We
will arbitrarily use K = 32, because that will guarantee good performance
on lists of the size where our merge sort implementation has been shown to
struggle compared to selection sort.

Listing 3.12: Modified merge sort implementation and benchmark. The base
case now calls selection sort when n ≤ 32.

#include "../Clock.hpp"

#include <iostream>

void selection_sort(unsigned long*source, unsigned long n) {

for (unsigned long i=0; i<n; ++i) {

unsigned long min_ind=i;

unsigned long min_val=source[i];

for (unsigned long j=i+1; j<n; ++j)

if (source[j] < min_val) {

min_ind = j;

min_val = source[j];

}

std::swap(source[i], source[min_ind]);

}

}

void merge_sort(unsigned long*source, const unsigned long n) {

if (n <= 32) {

selection_sort(source, n);

return;

}

unsigned long*source_2 = source + n/2;

merge_sort(source, n/2);

merge_sort(source_2, n-n/2);

unsigned long*buffer = new unsigned long[n];

// Merge sorted halves into buffer:

unsigned long i=0, j=0, buffer_ind=0;

while (i < n/2 && j < (n-n/2)) {
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if (source[i] < source_2[j]) {

buffer[buffer_ind] = source[i];

++i;

}

else {

// In case of equality, order doesn’t matter, so use this case:

buffer[buffer_ind] = source_2[j];

++j;

}

++buffer_ind;

}

// Copy remaining values:

for (; i<n/2; ++i, ++buffer_ind)

buffer[buffer_ind] = source[i];

for (; j<n-n/2; ++j, ++buffer_ind)

buffer[buffer_ind] = source_2[j];

// Copy back sorted list from buffer:

for (i=0; i<n; ++i)

source[i] = buffer[i];

delete[] buffer;

}

int main(int argc, char**argv) {

if (argc == 2) {

const unsigned long N = atoi(argv[1]);

unsigned long*x = new unsigned long[N];

for (unsigned long i=0; i<N; ++i)

x[i] = rand()%10000;

Clock c;

merge_sort(x, N);

c.ptock();

}

else

std::cerr << "Usage: sort <n>" << std::endl;

return 0;

}

Table 3.4 appends the runtimes of the modified merge sort implementa-
tion to the results already shown in Table 3.3. Not only does the modified
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merge sort perform well on small arrays (e.g., n = 16), it also performs sub-
stantially better than the original merge sort on large arrays. Herein lies a
crucial difference between modifying the merge sort recursion itself instead
of simply using a single if statement to estimate whether it’s more effi-
cient to call selection sort or merge sort on a list of the given size. Where
the latter would not improve the runtime of the modified merge sort on
large arrays, the former (which is how we implemented it in Listing 3.12)
will also improve performance on large arrays by enabling a more shallow
call tree from its recursions. The method demonstrated here is quite use-
ful for creating efficient implementations of divide-and-conquer algorithms
(e.g., sorting, Strassen matrix multiplication, Karatsuba’s integer multipli-
cation, FFT, etc.). Not only is a faster algorithm used on trivially small
problems (on which the divide-and-conquer will likely perform worse than a
naive method), the cost of the recursion itself may even be amortized out,
because the computational cost at a single “leaf” in the call tree16 may dwarf
the overhead from a recursive implementation in many cases.

Selection sort Selection sort (2) Merge sort Merge sort (2)
n = 16 4.375e-07 1.083e-06 7.406e-06 4.688e-07

n = 1024 0.0009152 0.0008235 0.0001358 7.966e-05
n = 65536 2.063 1.609 0.008960 0.004901

Table 3.4: Runtimes (in seconds) of selection sort (Listing 3.9), modified
selection sort (Listing 3.9), merge sort (Listing 3.11), and the modified merge
sort (Listing 3.12). Runtimes are performed on arrays of different lengths n
and reported to four significant figures. The modified selection sort imple-
mentation is not only competitive with selection sort on small arrays, it’s
also substantially faster than the original merge sort on large arrays.

3.6 Profiling

We can profile our code (i.e., run the code and measure the specific amounts
of CPU time taken by each line or function) with valgrind. To profile the
call ./a.out 1024, we simply run valgrind --tool=callgrind ./a.out

1024; this will output a callgrind.out... file, which we can visualize by

16The tree visualizing the recursive calls
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calling kcachegrind callgrind.out..., where callgrind.out... is the
file output by valgrind.

Questions

1. [Level 1] Using n = 65536, repeat the benchmarks of the modified
merge sort implementation with different values of K and plot the
performance as a function of K. What is the best K on your system?

2. [Level 2] Implement merge sort without allocating memory inside the
function (instead, accept two parameters, unsigned long*buffer and
unsigned long*source, both of which will be allocated once in main,
before calling the sorting function). Time replicate trials with n =
65536. What is the best K for the merge sort implementation that does
not allocate memory (previous question)? Using the best K value for
each implementation, is there any speedup when not allocating memory
inside the function? If so, how large is the speedup?

3. [Level 3] Implement a recursive, in-place quicksort (using a random
pivot element), which does not allocate any memory inside the function
and which uses no buffer. How does the performance compare with
merge sort and the sans-allocation merge sort? Does this surprise you?
Why do you think the results would be what they are?

Projects

1. [Level 2] Make the fastest sorting implementation you can (do not
bother with radixing or other complicated algorithms: only use the <
operator).
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Chapter 4

Conway’s Game of Life,
Buffering, and the Surprising
Lethargy of if Statements

4.1 Cellular automata and Conway’s Game

of Life

Cellular automata are built by using simple rules, which are used to update
the state of a “cell” (usually with boolean possible states, which indicate
living or dead). These cells are updated as a function of the states of the
adjacent cells. This state-dependent determinism, by which the future state
is a deterministic function of the previous state makes this an “automata”.
In the general case, adjacency could be defined using an arbitrary graph, but
in practice, adjacency is usually defined as neighboring pixels on a grid or
lattice.1

One of the earliest and most famous cellular automata was proposed by
John Conway in 1970. Conway’s cells are simply square pixels on a rectan-
gular grid, and the rules for cells coming alive, staying alive, and dying are
as follows:

A cell comes alive if it touches exactly 3 living neighboring pixels in
the previous iteration.

1For more information on various types of cellular automata, see Stephen Wolfram’s
book A New Kind of Science.

47
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A cell stays alive if it touches 2 or 3 living neighboring pixels in the
previous iteration.

A cell dies if it touches fewer than 2 (so called death from “loneli-
ness”) or more than 3 living neighboring pixels (so called death from
“overcrowding”) in the previous iteration.

In this way, Conway’s model can be thought of as a very simple model
of cells growing on a petri dish: too many living neighbors and there is
death from overconsumption of resources; too few living neighbors, and the
cell colony may die out because it does not reproduce fast enough to reli-
ably overcome spontaneous processes that kill the cells. Note that Conway
included diagonal pixels as “adjacent” (so the minimum number of living
adjacent cells is 0 and the maximum is 8).

Interestingly, Conway’s “game of life” is a universal Turing machine,
meaning that any Turing machine can be encoded as an initial pixel “board”
for the game of life (and vice versa: clearly a large enough computer, which
can be emulated by a Turing machine, can be used to implement Conway’s
game of life).2

In this chapter, we will implement Conway’s game of life in C++.

4.2 A wrong, first implementation via

std::vector

We will begin with the simplest implementation (an implementation that
will actually have a crucial mistake). In this case, we will simply use
std::vector<std::vector<bool> > to store the board matrix, then ad-
vance each cell in turn using the rules described above (Listing 4.1). This
initial implementation has a flaw in that it: it modifes the cells before they
are used by their neighbors, which will change the outcome as to whether

2This Turing complete claim is the kind of thing that sounds quite interesting when
someone mentions it at a conference, but the 500th time you hear it, and like always the
person doesn’t know any more information, you may begin to wonder if it was just a
rumor started years ago by Conway to see whether anyone bothers to understand things
anymore.3 They key is to use “gliders” (patterns in the game of life that reproduce them-
selves translated by a pixel or so, and thus appear to move as generations pass) to pass
information between components and to construct logic gates using other patterns.

3By the third day of a conference, it is normal to begin to die from overcrowding.
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these neighbors will live or die in the next iteration. We will not bother
timing this version, since we already know that it is flawed.

Listing 4.1: Simple, erroroneous game of life implementation. This imple-
mentation modifies cells before they are used by their neighbors to the right
and down.

#include "../Clock.hpp"

#include <iostream>

#include <vector>

bool advance_single(const std::vector<std::vector<bool> > board, const

unsigned int R, const unsigned int C, int r, int c) {

unsigned int living_neighbors = 0;

for (int i=std::max(0,r-1); i<=std::min(int(R)-1,r+1); ++i) {

for (int j=std::max(0,c-1); j<=std::min(int(C)-1,c+1); ++j) {

// Do not count this cell:

if (i != r || j != c)

if (board[i][j])

++living_neighbors;

}

}

return living_neighbors == 3 || (board[r][c] && living_neighbors >=2 &&

living_neighbors <= 3);

}

void advance(std::vector<std::vector<bool> > & board, const unsigned int

R, const unsigned int C) {

// Note:

// R == board.size()

// C == board[0].size()

std::vector<std::vector<bool> > result(R, std::vector<bool>(C, false));

for (unsigned int i=0; i<R; ++i)

for (unsigned int j=0; j<C; ++j)

// Error: we’re modifying the board, and thus changing the

// number of living neighbors for other cells:

board[i][j] = advance_single(board, R, C, i, j);

}

void print_board(const std::vector<std::vector<bool> > board, unsigned

int R, unsigned int C) {

for (unsigned int i=0; i<R; ++i) {
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for (unsigned int j=0; j<C; ++j)

std::cout << int(board[i][j]);

std::cout << std::endl;

}

}

int main(int argc, char**argv) {

if (argc == 3) {

const unsigned int R = 1<<10;

const unsigned int C = 1<<11;

unsigned int NUM_REPS = atoi(argv[1]);

bool print = bool( atoi(argv[2]) );

srand(0);

std::vector<std::vector<bool> > cur(R, std::vector<bool>(C));

for (unsigned int i=0; i<R; ++i)

for (unsigned int j=0; j<C; ++j)

cur[i][j] = (rand() % 2 == 0);

if (print)

print_board(cur, R, C);

Clock c;

for (unsigned int rep=0; rep<NUM_REPS; ++rep)

advance(cur, R, C);

c.ptock();

if (print)

print_board(cur, R, C);

}

else

std::cerr << "usage game-of-life <generations> <0:don’t print,

1:print>" << std::endl;

return 0;

}
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4.3 Corrected implementation with

std::vector

Our second attempt will use the same basic approach, but will return a new
board instead of modifying the current board. By using 2× the memory in
this manner, all of the new cell states can be computed using the existing
board’s states without modifying them.

Listing 4.2: A corrected version of Listing 4.1. Rather than modify the board,
a new board is returned.

#include "../Clock.hpp"

#include <iostream>

#include <vector>

bool advance_single(const std::vector<std::vector<bool> > board, const

unsigned int R, const unsigned int C, int r, int c) {

unsigned int living_neighbors = 0;

for (int i=std::max(0,r-1); i<=std::min(int(R)-1,r+1); ++i) {

for (int j=std::max(0,c-1); j<=std::min(int(C)-1,c+1); ++j) {

// Do not count this cell:

if (i != r || j != c)

if (board[i][j])

++living_neighbors;

}

}

return living_neighbors == 3 || (board[r][c] && living_neighbors >=2 &&

living_neighbors <= 3);

}

std::vector<std::vector<bool> > advance(std::vector<std::vector<bool> >

board, const unsigned int R, const unsigned int C) {

// Note:

// R == board.size()

// C == board[0].size()

std::vector<std::vector<bool> > result(R, std::vector<bool>(C, false));

for (unsigned int i=0; i<R; ++i)

for (unsigned int j=0; j<C; ++j)

result[i][j] = advance_single(board, R, C, i, j);

return result;
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}

void print_board(const std::vector<std::vector<bool> > board, unsigned

int R, unsigned int C) {

for (unsigned int i=0; i<R; ++i) {

for (unsigned int j=0; j<C; ++j)

std::cout << int(board[i][j]);

std::cout << std::endl;

}

}

int main(int argc, char**argv) {

if (argc == 3) {

const unsigned int R = 1<<10;

const unsigned int C = 1<<11;

unsigned int NUM_REPS = atoi(argv[1]);

bool print = bool( atoi(argv[2]) );

srand(0);

std::vector<std::vector<bool> > cur(R, std::vector<bool>(C));

for (unsigned int i=0; i<R; ++i)

for (unsigned int j=0; j<C; ++j)

cur[i][j] = (rand() % 2 == 0);

if (print)

print_board(cur, R, C);

Clock c;

for (unsigned int rep=0; rep<NUM_REPS; ++rep)

cur = advance(cur, R, C);

c.ptock();

if (print)

print_board(cur, R, C);

}

else

std::cerr << "usage game-of-life <generations> <0:don’t print,

1:print>" << std::endl;

return 0;

}

While the modified implementation in Listing 4.2 is correct, it is still
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incredibly slow. In contrast with Listing 4.1, we now make two copies of the
1024 × 2048 board (storing one board takes 2MB) each time we advance.
But even more importantly, by looking carefully we see that our function
advance single, which counts the neighboring living cells in the previous
iteration and returns a bool indicating whether the cell will be alive in the
next generation, also copies the board, and so the board will be copied 1024×
2048 times to advance the board one generation. Even with -O3 optimizations
(note that -O3 optimizations will be used throughout this chapter even when
not explicitly mentioned), the code from Listing 4.2 takes over an hour to
process 1000 generations.

4.4 The importance of passing by reference

Our third attempt will pass by reference wherever possible (Listing 4.3). By
passing the board by reference (via the & symbol) whenever possible, many
fewer copies are made. Simply by passing by reference, we will now see a
massive speedup in our program.4

However, we still copy the new state of the board (i.e., the return value
of advance). Note that each return value allocates a new board, and we are
not guaranteed that this allocation will allocate the same block of memory
used by the previous board. This means that the board may move through
memory as the generations of the game advance, and so the board may not
stay cached6. The code in Listing 4.3 takes 51.44s to run 1000 generations.

Listing 4.3: A modified version of Listing 4.3. The large
std::vector<std::vector<bool> > object is passed by reference wherever
possible.

#include "../Clock.hpp"

#include <iostream>

#include <vector>

4I once had a roommate who was tasked with writing some fast computational physics
code during the summer. After a lot of work, it was quite slow, and when we looked at
the code together, I saw that he was passing his matrices by value, and was thus making
local copies every time. After adding in a few humble ampersands, his code purred like a
walrus. He later went to the NSA.5

5I know this because he needed– you guessed it– a reference (a personal reference in
this case).

6Cache will be discussed more thoroughly in Chapter 9.
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bool advance_single(const std::vector<std::vector<bool> > & board, const

unsigned int R, const unsigned int C, int r, int c) {

unsigned int living_neighbors = 0;

for (int i=std::max(0,r-1); i<=std::min(int(R)-1,r+1); ++i) {

for (int j=std::max(0,c-1); j<=std::min(int(C)-1,c+1); ++j) {

// Do not count this cell:

if (i != r || j != c)

if (board[i][j])

++living_neighbors;

}

}

return living_neighbors == 3 || (board[r][c] && living_neighbors >=2 &&

living_neighbors <= 3);

}

std::vector<std::vector<bool> > advance(const

std::vector<std::vector<bool> > & board, const unsigned int R, const

unsigned int C) {

// Note:

// R == board.size()

// C == board[0].size()

std::vector<std::vector<bool> > result(R, std::vector<bool>(C, false));

for (unsigned int i=0; i<R; ++i)

for (unsigned int j=0; j<C; ++j)

result[i][j] = advance_single(board, R, C, i, j);

return result;

}

void print_board(const std::vector<std::vector<bool> > & board, unsigned

int R, unsigned int C) {

for (unsigned int i=0; i<R; ++i) {

for (unsigned int j=0; j<C; ++j)

std::cout << int(board[i][j]);

std::cout << std::endl;

}

}

int main(int argc, char**argv) {

if (argc == 3) {

const unsigned int R = 1<<10;
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const unsigned int C = 1<<11;

unsigned int NUM_REPS = atoi(argv[1]);

bool print = bool( atoi(argv[2]) );

srand(0);

std::vector<std::vector<bool> > cur(R, std::vector<bool>(C));

for (unsigned int i=0; i<R; ++i)

for (unsigned int j=0; j<C; ++j)

cur[i][j] = (rand() % 2 == 0);

if (print)

print_board(cur, R, C);

Clock c;

for (unsigned int rep=0; rep<NUM_REPS; ++rep)

cur = advance(cur, R, C);

c.ptock();

if (print)

print_board(cur, R, C);

}

else

std::cerr << "usage game-of-life <generations> <0:don’t print,

1:print>" << std::endl;

return 0;

}

4.5 Buffering using bool*

There is a way to ensure that we use the same memory for the current board
and for the next board. We will allocate two boards, one for our current
state and one for the next state, at the beginning of our main function, and
then we can use the current board to initialize the next board. This method
is known as “buffering”, and is quite commonly used for graphics rendering
(e.g., drawing the next state of the screen in a video game engine).

After we initialize the next board, it will become next iteration’s current
board. There we have two options: One option is to copy the memory from
the next board to the current board (e.g., using memcpy). The second option
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is more lazy, and is therefore faster7: if we use pointers for the arrays, we
can simply swap the pointers (bool* instead of std::vector<bool>) for the
next and current boards instead of swapping the array contents (Listing 4.4)9

Note that without optimizations on, Listing 4.4 will run substantially
faster than Listing 4.3, but with optimizations turned on it is only be mod-
erately faster: it runs 1000 generations in 43.41s.

Listing 4.4: A buffered game of life. Two matrices are allocated at the start of
the program. Then one is initialized as the current board, and one is used to
construct the next board. In order to subsequently make the next board into
the current board and repeat the process, the pointers are swapped rather
than copying the data itself.

#include "../Clock.hpp"

#include <iostream>

bool advance_single(const bool*prev, const unsigned int R, const unsigned

int C, int r, int c) {

unsigned int living_neighbors = 0;

for (int i=std::max(0,r-1); i<=std::min(int(R)-1,r+1); ++i) {

for (int j=std::max(0,c-1); j<=std::min(int(C)-1,c+1); ++j) {

// Do not count this cell:

if (i != r || j != c)

if (prev[i*C+j])

++living_neighbors;

}

}

return living_neighbors == 3 || (prev[r*C+c] && living_neighbors >=2 &&

living_neighbors <= 3);

}

void advance(bool*cur, const bool*prev, const unsigned int R, const

unsigned int C) {

for (unsigned int i=0; i<R; ++i)

for (unsigned int j=0; j<C; ++j)

cur[i*C+j] = advance_single(prev, R, C, i, j);

}

7“The best mathematician is a lazy mathematician.”8
8You know who said that? Me neither, I was going to look it up, but I was hanging

out, doing some math, taking it easy and, long story short, this one got away from me. . .
9Allowing such lazy assignment or swap operations to be performed in an object-

oriented context (for clarity, we are doing this manually here, not using a object oriented
code) is a large advancement made in C++11, using “rvalue references”.
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void print_board(const bool*board, const unsigned int R, const unsigned

int C) {

for (unsigned int i=0; i<R; ++i) {

for (unsigned int j=0; j<C; ++j)

std::cout << int(board[i*C+j]);

std::cout << std::endl;

}

}

int main(int argc, char**argv) {

if (argc == 3) {

const unsigned int R = 1<<10;

const unsigned int C = 1<<11;

unsigned int NUM_REPS = atoi(argv[1]);

bool print = bool( atoi(argv[2]) );

srand(0);

bool*prev = (bool*)calloc(R*C,sizeof(bool));

bool*cur = (bool*)calloc(R*C,sizeof(bool));

for (unsigned int i=0; i<R; ++i)

for (unsigned int j=0; j<C; ++j)

cur[i*C+j] = (rand() % 2 == 0);

if (print)

print_board(cur, R, C);

Clock c;

for (unsigned int rep=0; rep<NUM_REPS; ++rep) {

std::swap(cur, prev);

advance(cur, prev, R, C);

}

c.ptock();

if (print)

print_board(cur, R, C);

}

else

std::cerr << "usage game-of-life <generations> <0:don’t print,

1:print>" << std::endl;

return 0;
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Listing 4.5: Testing Listing 4.4 against Listing 4.3. This bash script runs
both methods for 100 generations, saves the output (by setting the second
command line parameter to 1), uses grep to ignore the potentially different
runtimes, and then uses diff to compare the results character by character.
No output means the test succeeds, while any other output means it fails.

g++ -std=c++11 return-copy.cpp

#run 100 generations and print initial board and final board:

./a.out 100 1 > /tmp/a

g++ -std=c++11 unbuffered.cpp

#run 100 generations and print initial board and final board:

./a.out 100 1 > /tmp/b

diff <(grep -v Took /tmp/a) <(grep -v Took /tmp/b)

}

Note that our iterative approach to successively honing our code from a
naive version to a fast version allows us to use the simpler versions to test
the more advanced versions and to verify that they are correct. For example,
this can be done by using the second command line argument 1, which will
print the initial board and final board (Listing 4.5).

4.6 Decreasing reliance on if statements

if statements are generally much slower than other types of statements.
This is partly because of pipelining, where the processor is built to partition
tasks into separate sub-tasks. This enables one circuit to solve one sub-task
while the circuit for a different sub-task is being applied to separate data10.

10This is like doing laundry: if the washing and drying step were performed together and
each take roughly an hour, then a load of laundry takes 2 hours and 10 loads of laundry
take 20 hours. But with separate washing and drying steps, while the first load of laundry
is drying, the second load of laundry can be put in the washer. With the exception of
the first load (there is nothing being dried while the first load is in the washer) and the
last load (there is nothing new being washed while the final load is being dried), 2 jobs
are always running simultaneously. Thus, if you did many loads of laundry (enough that
the first and last loads didn’t contribute much), you would get a roughly 2× speedup by
having separate washing and drying apparatuses11.

11Or is it apparati?
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These kinds of tricks rely heavily on knowing what task will come next; if
statements make it difficult to know the next task until they are evaluated.
In contrast, a loop of the form for (int i=0; i<10; ++i) array[i] +=

1; may sometimes be able to process the i=1 iteration of the loop simul-
taneous to the i=0 iteration. for (int i=0; i<10; ++i) if (array[i]

== 0) break; array[i] += 1; ruins that predictive ability. This becomes
more important with loop unrolling optimizations mentioned in Chapter 10.
In fact, so great is the speed-up from hardware-level parallelizations of which
modern processors are capable that the best strategy is often to use “branch
prediction”12 on the hardware to predict whether the if statement will have a
true or false argument, and thus whether the code inside the if statement
will be executed; this sometimes allows the code inside the if statement to
be run simultaneously with the previous few and subsequent few assembly
instructions.

Of course, if the branch prediction proves to be wrong, the downside is
that the state of the processor before the incorrect branch prediction needs
to be restored and all of the code run since the incorrect branch prediction
needs to be re-run with the correct boolean argument. As you may guess,
this inflicts a fairly large runtime penalty. From that, you may find yourself
asking, “Why is branch prediction even useful, given that penalty for being
wrong is so high?” One reason that many branch statments can be correctly
predicted is because of loops: the loop while (a > 0) will have a branch

statement at the end of the loop that jumps back to the top of the loop when
a>0. Such a high percentage of backwards branches are taken because of
loops, and so using fairly primitive means, it is possible to perform branch
prediction accurately enough that the benefits of frequently predicting cor-
rectly outweigh the high cost of predicting incorrectly. It’s reminiscent of
coming to a fork in the road when driving, and your GPS is slow to tell you
which way to go; you could wait (no branch prediction) or you could take
your best guess and then, if you were wrong, you would need to drive back
to the fork in the road and take the correct route. Being wrong will take

12if statements translate to branch statements in assembly code. branch statements
either jump to a specified line (like conditional versions of goto statements in C) if certain
conditions are met. For example, the lines if ( x == 7 ) x +=1; x *= 2; may trans-
late to assembly like LINE1: SUB x,x,7; LINE2: BRnp LINE4; LINE3: ADD x,x,1;

LINE4: MUL x,x,2;, where BRANCHnp means “branch if the previous line had a result
value that was (n)egative or (p)ositive”. In this way, it branches around the line x += 1

when the argument inside the if statement is false.
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more time than waiting for the correct GPS directions, but if you’re right
often enough, it’s still beneficial on average to guess rather than wait for your
GPS.

Several of the if statements in our game of life program will result in
branch statements that are are not quite as conducive to branch predic-
tion. For example, for loops in advance single have this form: for (int

i=std::max(0,r-1); i<=std::min(int(R)-1,r+1); ++i). Every time a
cell is advanced with advance single, the std::min and std::max func-
tions will use branch statements13. These min and max statements are used
so that we do not try to look for neighboring cells in row -1 or row r (the valid
range is 0, 1, . . . r-1). One workaround for this is to simply pad our matrix
with a row filled with dead cells on the top, a row filled with dead cells on
the bottom, a column filled with dead cells on the left, and a column filled
with dead cells on the right. Our (R+ 2)× (C+ 2) matrix will be larger, but
not significantly so for large problems, and it will allow us to avoid a few if

statements for each call to advance single (Listing 4.6). It runs in 17.47s,
under half the runtime of the buffered version without a border.

Listing 4.6: A buffered game of life with a border of dead pixels. By em-
bedding the matrix inside a border of dead pixels, we no longer need special
cases to avoid going off the edge of the matrix, and thus fewer if statements
are used.

#include "../Clock.hpp"

#include <iostream>

bool advance_single(const bool*prev, const unsigned int R, const unsigned

int C, int r, int c) {

unsigned int living_neighbors = 0;

for (int i=-1; i<=1; ++i) {

for (int j=-1; j<=1; ++j) {

// Do not count this cell:

if (i != 0 || j != 0)

if (prev[(r+i)*(C+2)+(c+j)])

++living_neighbors;

}

}

return living_neighbors == 3 || (prev[r*(C+2)+c] && living_neighbors

>=2 && living_neighbors <= 3);

13Consider how you would implement a min function: T min(const T & a, const T &
b) { if (a < b) return a; return b; }
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}

void advance(bool*cur, const bool*prev, const unsigned int R, const

unsigned int C) {

for (unsigned int i=1; i<R+1; ++i)

for (unsigned int j=1; j<C+1; ++j)

cur[i*(C+2)+j] = advance_single(prev, R, C, i, j);

}

void print_board(const bool*board, const unsigned int R, const unsigned

int C) {

for (unsigned int i=1; i<R+1; ++i) {

for (unsigned int j=1; j<C+1; ++j)

std::cout << int(board[i*(C+2)+j]);

std::cout << std::endl;

}

}

int main(int argc, char**argv) {

if (argc == 3) {

const unsigned int R = 1<<10;

const unsigned int C = 1<<11;

unsigned int NUM_REPS = atoi(argv[1]);

bool print = bool( atoi(argv[2]) );

srand(0);

bool*prev = (bool*)calloc((R+2)*(C+2),sizeof(bool));

bool*cur = (bool*)calloc((R+2)*(C+2),sizeof(bool));

for (unsigned int i=1; i<R+1; ++i)

for (unsigned int j=1; j<C+1; ++j)

cur[i*(C+2)+j] = (rand() % 2 == 0);

if (print)

print_board(cur, R, C);

Clock c;

for (unsigned int rep=0; rep<NUM_REPS; ++rep) {

std::swap(cur, prev);

advance(cur, prev, R, C);

}

c.ptock();
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if (print)

print_board(cur, R, C);

}

else

std::cerr << "usage game-of-life <generations> <0:don’t print,

1:print>" << std::endl;

return 0;

}

Listing 4.6 still features two if statements inside the loops of
advance single14. Fortunately, it is possible to remove both of those if

statements. The first if statement ensures we do not count a cell as
its own neighbor: if (i != 0 || j != 0). This can be omitted as long
as we remember to subtract its contribution out after the loops are fin-
ished.15 The inner if statement checks whether the neighboring cell is
living or dead and increments living neighbors if the neighboring cell
was living: if (prev[(r+i)*(C+2)+(c+j)]) ++living neighbors;. Once
again, this can be simplified in terms of arithmetic: living neighbors +=

prev[(r+i)*(C+2)+(c+j)];. Here we use the fact that bool types are ac-
tually integers where false is equivalent to 0 and true is equivalent to 1.
The result, Listing 4.7, runs 1000 generations in 7.289s, less than half the
runtime of Listing 4.6.

Listing 4.7: A buffered game of life with still fewer if statements. if state-
ments are replaced with equivalent arithmetic.

#include "../Clock.hpp"

#include <iostream>

bool advance_single(const bool*prev, const unsigned int R, const unsigned

int C, int r, int c) {

unsigned int living_neighbors = 0;

// These loops will be unrolled beautifully:

for (int i=-1; i<=1; ++i)

for (int j=-1; j<=1; ++j)

14We should be much more wary of if statements that will be called many times, such
as those inside loops.

15It may seem strange that a subtraction is actually cheaper than an if statement,
but it’s true; not only does the if statement make optimizations much more difficult, it’s
also called 9 times inside this loop, whereas the subtraction operation would simply be
performed 1 time outside the loop.
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living_neighbors += prev[(r+i)*(C+2)+(c+j)];

living_neighbors -= prev[r*(C+2)+c];

return living_neighbors == 3 || (prev[r*(C+2)+c] && living_neighbors

>=2 && living_neighbors <= 3);

}

void advance(bool*cur, const bool*prev, const unsigned int R, const

unsigned int C) {

for (unsigned int i=1; i<R+1; ++i)

for (unsigned int j=1; j<C+1; ++j)

cur[i*(C+2)+j] = advance_single(prev, R, C, i, j);

}

void print_board(const bool*board, const unsigned int R, const unsigned

int C) {

for (unsigned int i=1; i<R+1; ++i) {

for (unsigned int j=1; j<C+1; ++j)

std::cout << int(board[i*(C+2)+j]);

std::cout << std::endl;

}

}

int main(int argc, char**argv) {

if (argc == 3) {

const unsigned int R = 1<<10;

const unsigned int C = 1<<11;

unsigned int NUM_REPS = atoi(argv[1]);

bool print = bool( atoi(argv[2]) );

srand(0);

bool*prev = (bool*)calloc((R+2)*(C+2),sizeof(bool));

bool*cur = (bool*)calloc((R+2)*(C+2),sizeof(bool));

for (unsigned int i=1; i<R+1; ++i)

for (unsigned int j=1; j<C+1; ++j)

cur[i*(C+2)+j] = (rand() % 2 == 0);

if (print)

print_board(cur, R, C);

Clock c;

for (unsigned int rep=0; rep<NUM_REPS; ++rep) {
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std::swap(cur, prev);

advance(cur, prev, R, C);

}

c.ptock();

if (print)

print_board(cur, R, C);

}

else

std::cerr << "usage game-of-life <generations> <0:don’t print,

1:print>" << std::endl;

return 0;

}

4.7 Replacing logical operations with a table

Logical operations on booleans (e.g., &&, ||, etc.) are quite fast; how-
ever, the line return living neighbors == 3 || (prev[r*(C+2)+c] &&

living neighbors >=2 && living neighbors <= 3); will often need to
wait on the previous operation to be completed before subsequent oper-
ations can be performed. For example, living neighbors == 3 means
that the remainder of the logical operation need not be computed, whereas
living neighbors != 3 will defer to the remainder of the ||. We can
simplify this further by memorizing the possible cases in a table before
compilation. Clearly, there are two cases: when the cell is alive, the
requirements to stay alive are distinct from the requirements to bring a
dead cell to life. Within each of those cases, whether the cell will be liv-
ing or dead in the next iteration will be a function of living neighbors.
For this reason, we will make a two-dimensional table: the first index is
whether the cell is currently living or dead, and the second index will be
the number of living neighbors. The boolean value in the table cell will
be the new state of the cell (false for dead, true for living). By us-
ing this table, we no longer need to compute logical operations at run-
time; instead, we will simply return prev and alive neighbors to next

[is this cell living][living neighbors];. The number of rows in our
table will be 2 (to include both booleans, which are 0 and 1 as integers).
Likewise, the number of columns in our table will be 9 (there are 9 cells in a
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3 × 3 grid) and we exclude the cell on which we focus (it is not included in
its own neighbors), so the valid columns will be 0, 1, . . . 8, which consists of
9 possible column values.

The resulting implementation (Listing 4.8) shaves off still more runtime
to reach 1000 generations in 5.786s. While the implementation from List-
ing 4.2, which did not include references, could be regarded as poorly written
code, every subsequent listing was well-written C++ code16, and yet we’ve still
managed to reach a speedup of over 8.8× over what a good compiler could
produce on our first reasonable implementation.

Listing 4.8: Even fewer if statements via table lookup. if statements are
replaced with a table lookup and arithmetic.

#include "../Clock.hpp"

#include <iostream>

const bool prev_and_alive_neighbors_to_next[2][9] = {

// previously dead:

{false, false, false, true, false, false, false, false, false},

// previously alive:

{false, false, true, true, false, false, false, false, false}

};

bool advance_single(const bool*prev, const unsigned int R, const unsigned

int C, int r, int c) {

unsigned int living_neighbors = 0;

// These loops will be unrolled beautifully:

for (int i=-1; i<=1; ++i)

for (int j=-1; j<=1; ++j)

living_neighbors += prev[(r+i)*(C+2)+(c+j)];

bool is_this_cell_living = prev[r*(C+2)+c];

living_neighbors -= is_this_cell_living;

return

prev_and_alive_neighbors_to_next[is_this_cell_living][living_neighbors];

}

void advance(bool*cur, const bool*prev, const unsigned int R, const

16The fact that variables are passed by value by default in C++ is often confusing to
those more familiar with Java and Python, where pointers to objects are always passed17.

17This is essentially how a reference is implemented by the compiler: a reference is a
pointer that can only be initialized once and which does not need to be dereferenced every
time you retrieve its value or modify it.
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unsigned int C) {

for (unsigned int i=1; i<R+1; ++i)

for (unsigned int j=1; j<C+1; ++j)

cur[i*(C+2)+j] = advance_single(prev, R, C, i, j);

}

void print_board(const bool*board, const unsigned int R, const unsigned

int C) {

for (unsigned int i=1; i<R+1; ++i) {

for (unsigned int j=1; j<C+1; ++j)

std::cout << int(board[i*(C+2)+j]);

std::cout << std::endl;

}

}

int main(int argc, char**argv) {

if (argc == 3) {

const unsigned int R = 1<<10;

const unsigned int C = 1<<11;

unsigned int NUM_REPS = atoi(argv[1]);

bool print = bool( atoi(argv[2]) );

srand(0);

bool*prev = (bool*)calloc((R+2)*(C+2),sizeof(bool));

bool*cur = (bool*)calloc((R+2)*(C+2),sizeof(bool));

for (unsigned int i=1; i<R+1; ++i)

for (unsigned int j=1; j<C+1; ++j)

cur[i*(C+2)+j] = (rand() % 2 == 0);

if (print)

print_board(cur, R, C);

Clock c;

for (unsigned int rep=0; rep<NUM_REPS; ++rep) {

std::swap(cur, prev);

advance(cur, prev, R, C);

}

c.ptock();

if (print)

print_board(cur, R, C);
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}

else

std::cerr << "usage game-of-life <generations> <0:don’t print,

1:print>" << std::endl;

return 0;

}

4.8 Cutting the memory footprint in half

Note that all of the correct approaches used here use some sort of second
matrix, and even if it is temporary, that means we still need enough RAM
to allocate both matrices simultaneously. Just in case we are in a “memory-
bound” scenario18, we should consider the important unanswered question:
can we somehow use a single matrix and eschew the use of a buffer? On
the surface, it seems difficult: if we are to modify a cell’s state, how will we
be able to retrieve its old state when we subsequently modify its neighbors?
Here we can exploit the fact that, as stated above, a bool really is treated
like a small integer (usually 8 bits, which is the same size as an ascii char19

on most architectures).21.

Since we’re already wasting some bits by using an 8-bit bool, we might
as well use an char. We will simply treat this as an 8-bit integer22

Now that we have access to 8 bits, we can twiddle them so that we use
the least-significant bit as the previous state of that cell and the second-least-
significant bit as the new state of the cell. For example, the value 2 (0b10 in

18A situation where the amount of available memory is the greatest limitation on per-
formance or usability

19Unicode characters have a greater alphabet, and so use 16 bits or more.20
20Here the number of available emojis becomes very important.
21The reason for this has to do with the circuitry in a modern computer: it is simply

not efficient to be able to access an individual bit at a time, and so minimal chunks of bits
(usually bytes or more) are required. We can still modify individual bits by using “bit
twiddling”. This will be discussed in further detail in Chapter 5.

22Purists will caution that basic types like char, int, long, etc., do not have strictly
standard sizes; however, although this criticism would be technically correct, very little
has changed between the time when 64-bit operating systems became ubiquitous and the
present day when I’m writing this. If these values change, adjust accordingly to use the
correct 8-bit type. As standardization improves, it will be reasonable to expect most
compilers to implement type names like int8 and float32 in the future.
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binary) would mean the cell was previously dead, but is now alive (meaning
it must have had exactly 3 living neighbors in the previous iteration).

After advancing the cells one iteration, a final step can be added to make
the new state into the current state: we simply divide by 2 (and round down,
taking the floor). For example, 0b10 would become 0b1 when we divide by
2, 0b11 would become 0b1, and 0b01 would become 0b0. We can divide by
2 and floor (i.e., perform integer division by 2) easily by simply bit shifting
to the right by 1 bit: val = val >> 1; or the equivalent val >>= 1;.

When we sum living neighbors, we will also only want to look at the
least-significant bit; we will simply bitwise and it with 1, board[index] &

1, and it will turn into either a 0 or a 1, the same as it was before when
we were treating a bool as an integer. This is why we assigned the least-
significant bit as the current state (otherwise, we would have needed to shift
every result inside the loop of neighbors).

The other difference is that we will directly modify the board in
advance single, rather than return a bool value; however, we want to take
care to only modify the second most-significant bit. So if a cell that was dead
is coming to life, we want to replace its value 0b0 with 0b10. This can be
accomplished by using the bitwise | operator23 and the left bit shift operator
<<. In this manner, we do not destroy the current state before all cells have
been visited. After every cell has been visited, we will bit shift them all to
the right so that their new states become current. The resulting code, shown
in Listing 4.9, takes 9.644s to run 1000 iterations. Although this is slower
than the fastest buffered method we tried, it uses half the memory.

Listing 4.9: An unbuffered game of life using bit twiddling. The least-
significant bit is used for the current state of the cell and the second least-
significant bit is used for the next state of the cell.

#include "../Clock.hpp"

#include <iostream>

// Code:

// 00 -> dead now, dead prev

// 01 -> dead now, alive prev

23Note that a single & and | perform bitwise operations on all bits, whereas the double
&& and || perform the operations as if the arguments are bool types. E.g., 2&1 will return
0, whereas 2&&1 will return 1, i.e., true. Likewise if (6&2) f(); will call function f()

because the argument to the if statement is nonzero, even though it does not set the
least-significant bit.
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// 10 -> alive now, dead prev

// 11 -> alive now, alive prev

void advance_single(char*board, const unsigned int R, const unsigned int

C, int r, int c) {

// living_neighbors can never be >9, so a char is enough:

unsigned char living_neighbors = 0;

for (int i=-1; i<=1; ++i)

for (int j=-1; j<=1; ++j)

// Use &1 to look only at previous value (%2 would also work,

// but may be slower):

living_neighbors += (board[(r+i)*(C+2)+(c+j)] & 1);

living_neighbors -= (board[r*(C+2)+c] & 1);

board[r*(C+2)+c] = board[r*(C+2)+c] | ((living_neighbors == 3 || (

(board[r*(C+2)+c] & 1) && living_neighbors >=2 && living_neighbors

<= 3)) << 1);

}

void shift_current_to_prev(char*board, const unsigned int R, const

unsigned int C) {

for (unsigned int i=1; i<R+1; ++i)

for (unsigned int j=1; j<C+1; ++j)

board[i*(C+2)+j] >>= 1;

}

void advance(char*board, const unsigned int R, const unsigned int C) {

for (unsigned int i=1; i<R+1; ++i)

for (unsigned int j=1; j<C+1; ++j)

advance_single(board, R, C, i, j);

shift_current_to_prev(board, R, C);

}

void print_board(const char*board, const unsigned int R, const unsigned

int C) {

for (unsigned int i=1; i<R+1; ++i) {

for (unsigned int j=1; j<C+1; ++j)

std::cout << int(board[i*(C+2)+j]);

std::cout << std::endl;

}

}

int main(int argc, char**argv) {

if (argc == 3) {
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const unsigned int R = 1<<10;

const unsigned int C = 1<<11;

unsigned int NUM_REPS = atoi(argv[1]);

bool print = bool( atoi(argv[2]) );

srand(0);

char*board = (char*)calloc((R+2)*(C+2),sizeof(char));

for (unsigned int i=1; i<R+1; ++i)

for (unsigned int j=1; j<C+1; ++j)

board[i*(C+2)+j] = (rand() % 2 == 0);

if (print)

print_board(board, R, C);

Clock c;

for (unsigned int rep=0; rep<NUM_REPS; ++rep)

advance(board, R, C);

c.ptock();

if (print)

print_board(board, R, C);

}

else

std::cerr << "usage game-of-life <generations> <0:don’t print,

1:print>" << std::endl;

return 0;

}

Of course, further speedups are possible: Whe we sum the living neigh-
bors, we are summing over a 3×3 grid. When we sum the living neighbors of
the next cell, we are summing over a 3× 3 grid, with 6 of those cells overlap-
ping the previous sum. It follows that we could sum the living neighbors first
for all cells (reusing the compution in the overlapping 3 × 3 windows) and
then use those living neighbors as the buffer24. Likewise, we’ve constructed
the table to use the sum of 8 cells, which is performed by summing the 3× 3
grid and subtracting out the center cell. This table could be modified to use
the full sum of the 3 × 3 grid and thereby avoid the subtraction operation.

24Once we know the number of living neighbors for each cell, we can erase the boolean
cell states without consequence, and so we no longer need an additional buffer.
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And there are certainly other hacks in addition to these, which can be used
to save time or memory.

Questions

1. [Level 1] Does the unbuffered game of life implementation from List-
ing 4.9 use memory as efficiently as possible (you may exclude the
dead cell borders in this question)? What can be done to make it more
efficient? What challenges would arise?

2. [Level 2] Modify Listing 4.9 so that it uses a table to update the char

values (instead of using bitwise logic). Benchmark it. What influence
does this have on the performance?

3. [Level 3] Propose a new technique for speeding up a game of life
implementation even faster than done here. Is it buffered or unbuffered?
Be specific about details of how the method works, and sketch out
enough so that another student could implement your method from
your description.

Projects

1. [Level 2] Write the fastest game of life implementation that you can.
Test it with diff against the implementations in this chapter to make
sure its output matches the correct result.
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Chapter 5

Bit-Packed Strings and
Hardware Parallelism

5.1 Nucleotide strings

DNA molecules are composed of chemical chains of G (guanine), A (adenine),
T (thymine), and C (cytosine). DNA sequences (i.e., the strings with char-
acters in {‘G’, ‘A’, ‘T’, ‘C’}) are studied because of their causal relationship
in forming proteins1. Genomes2 are studied because of their importance to
biochemical discoveries3, evolution4, and medical research5.

1Essentially, the most numerous of the functional biochemical units of biology, although
other important functional elements exist.

2A genome is the sequence of all DNA in an organism. You can think of it like a series
of encyclopedias, a collection of separate books, where each book is contiguous. In this
book we will only focus on situations where there is one chromosome in the genome (i.e.,
where there is only one book in the set of encyclopedias). Thus, it is sufficient here to
assume that a genome can be stored as a single string rather than requiring a collection
of strings (this is the case for some bacterial genomes, but it would not be correct for the
human genome).

3E.g., green fluorescent protein (GFP), the means by which we can visually observe
components of a living cell

4E.g., building phylogenies, the evolutionary trees showing the evolutionary distance
between species

5E.g., defects in “splicing” RNA, an intermediate product between DNA and proteins,
which can lead to changes in some cells and therefore lead to severe disorders such as
spinal muscular atrophy

73
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5.2 Loading a genome from a text file

A genome is usually stored in a “fasta”6 file; however, for simplicity, we
will work with flat text files filled only with characters in the alphabet {‘G’,
‘A’, ‘T’, ‘C’} (where case matters: ’g’ will not be a valid character for our
purposes).

First, we will write a short piece of code to load the DNA from a text file
(Listing 5.1). On a sample genome of 4.4 million base pairs (i.e., a string of
length 4.4 million nucleotide characters), executing this code takes 0.06738s
on average (estimated by repeating over 1024 replicates).

Listing 5.1: Loading a DNA string from file. Characters are simply appended
to a string.

#include "../Clock.hpp"

#include <fstream>

#include <string>

int main() {

// A file of 4E6 G A T and C characters (the contents are

// unimportant):

std::ifstream fin("bigger.txt");

std::string genome;

Clock c;

char base;

while (fin >> base)

genome += base;

c.ptock();

return 0;

}

6Originally pronounced “Fast A”, but mentioned so frequently in computational biology
that it has been replaced by the quicker-to-say “fasteh”7.

7Pronounce “faster” with a Boston accent. Now how you like them apples?
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5.3 Bit packing

Our DNA string uses only 4 values (G, A, T, and C); however, ASCII charac-
ters can store 256 possible values. 4 possible values can be written with 2 bits
(4 = 22 bits)8, while char has 8 bits. This means for each DNA character, we
could be storing 4 DNA characters if we used bits as efficiently as possible.
I.e., for each byte we actually use, a naive string will waste 3 bytes. As we
will demonstrate in this chapter, bit packing saves substantial space, but it
can be used to achieve large speedups as well.

It turns out, using bits efficiently is more complicated than it might seem.
For instance, we cannot directly modify one bit of RAM. Instead, we need to
load a block of bits from RAM, and then retrieve the particular bit in which
we’re interested.9 As described in Chapter 4, a bool is actually an 8-bit
integer rather than a single bit. So in order to pack 4 nucleotide characters
into an 8-bit byte, we need directly manipulate the bits of the 8-bit char.
This direct bit manipulation is called “bit twiddling”.

We will focus on a few key operators: & performs bitwise and (0b1101
& 0b1000 returns 0b1000), | performs bitwise or (0b1101 | 0b1000 re-
turns 0b1101), << performs bit shifting to the left (0b1101 << 2 returns
0b110100), and >> performs bit shifting to the right (0b1101 >> 1 returns
0b110).10 From these basic ingredients, we can perform very sophisticated
operations.

8Half of a byte is 4 bits and is called a “nibble”, a pun on a diminutive bite. As a
student, I started calling the 2 bits necessary for a nucleotide a “nibblet” as a convenient
shorthand.

9This is partly because of the lack of modularity and the many wires we would need
in order to multiplex a particular bit– for this, we would need every single bit in RAM to
be wired to the processor! The number of wires would physically limit the size of the chip
and the parasitic capacitance from these many wires would require lower clock speeds. For
this reason (as well as modularity), we build computers in a more hierarchical manner,
multiplexing blocks of bits from RAM to the bus, which can then be accessed by the
processor.

10Note that each of these operations also has a corresponding modifier operation: x =

x << 1 is equivalent to x <<= 1. Likewise, x = x | 7 is equivalent to x |= 7.11
11Why do we use these shorter modifier forms? There are two reasons: it is less typing,

and it can produce faster assembly code (we are specifically helping the compiler to notice
that the destination of the operation is the same as one of the sources). This can help the
compiler to use only two registers and also to hold the result in a register a while longer
rather than writing it back to RAM.
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5.4 An initial (and suboptimal) code

Before we begin, we will establish a code for the nucleotides: each nibblet
should map bijectively to a nucleotide. Although this code is arbitrary (i.g.,
G could be represented by 0b00 and T could be represented by 0b01 or vice
versa). Later we will see that some codes have attractive properties, but for
now we will begin with the code G=0b00, C=0b01, T=0b10, and A=0b11.

As explained above, by “bit packing” the values (i.e., by bit twiddling
carefully to be as efficient as possible with our available bits), we can store a
string of 4 nucleotides in a single byte. As an example, we will bit pack the
string “ACTC” using the code above.

Let us begin by initializing variables for our code: g code, c code, t code,
and a code. Then we can use the <<= and |= operators to insert the charac-
ters “ACTC” (Listing 5.2). Note that when we print x to the screen, it will
be interpreted as a char, and so it will print a single character. This basic
approach can be optimized slightly (Listing 5.3); however, while Listing 5.3
will avoids temporary result variables, it must proceed sequentially and can-
not apply all 4 operations simultaneously, even if the compiler and hardware
would support it12.

Although we could use += instead of |=, += will be slightly slower than
|=. Consider: |= is a purely bitwise operation, meaning there is no cross-
talk between different bits (e.g., the most-significant bit and least-significant
bits of the arguments can be operated on independently); however, addition
with += does allow information to be transmitted between bits (this occurs
during “carry” operations). For this reason, circuitry for bitwise or is simpler
and usually faster than circuitry for integer addition. By using |=, we are
exploiting the fact that we know that the arguments have mutually exclusive
values at each bit. This means that a carry operation is impossible, and thus
we know in advance that += will behave like |=. When these operations are
performed very frequently inside a loop, operations like |= can be significantly
faster than using +=. The same goes for the bit shift operators: x*2 can be
replaced with x+x, but even better, it can be replaced with x<<113. For
this reason, and for the sake of elegance, int(pow(2.0, n)) (where n is an

12This is because the variable x is modified by each line, and its state (used by future
lines) will not be known until the current line terminates. In compiler jargon, this is known
as a “read after write” (RAW) dependency, and it may inhibit automated parallelism.

13In a base-10 system, multiplying by 10 shifts the digits left and appends a zero as the
least-significant digit. In binary, multiplying by 2 has the same effect.
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int) is often written with the more pleasing 1<<n. Likewise, integer division
n/2 can be performed as n>>1. Compilers are currently smart enough to
figure out some of these tricks, but they are not smart enough to figure out
everything14.

Listing 5.2: Packing 4 nucleotides into a byte and printing. The nucleotide
string “ACTC” is packed into a single 8-bit char and then printed in binary
using std::bitset.

#include <iostream>

#include <bitset>

int main() {

char g_code=0b00;

char c_code=0b01;

char t_code=0b10;

char a_code=0b11;

char actc = 0;

actc |= (a_code << 6); // 0b11000000

actc |= (c_code << 4); // 0b11010000

actc |= (t_code << 2); // 0b11011000

actc |= c_code; // 0b11011001

// not helpful: prints as single character:

std::cout << actc << std::endl;

// slightly helpful: prints as single int value:

std::cout << int(actc) << std::endl;

// useful for debugging: prints as binary:

std::cout << std::bitset<8>(actc) << std::endl;

return 0;

}

Listing 5.3: Optimized version of Listing 5.2. Some temporary values (the
results of the (a code << 6) operations) can be avoided. This is reminiscent
of Horner’s rule, by which a degree-n polynomial is evaluated in O(n) rather
than O(n2).

14And besides, as long as it doesn’t detract from the readability and cleanliness of our
code, we might as well make these insights explicit.
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#include <iostream>

#include <bitset>

int main() {

char g_code=0b00;

char c_code=0b01;

char t_code=0b10;

char a_code=0b11;

char actc = 0;

actc |= a_code; // 0b00000011

actc <<= 2; // 0b00001100

actc |= c_code; // 0b00001101

actc <<= 2; // 0b00110100

actc |= t_code; // 0b00110110

actc <<= 2; // 0b11011000

actc |= c_code; // 0b11011001

// not helpful: prints as single character:

std::cout << actc << std::endl;

// slightly helpful: prints as single int value:

std::cout << int(actc) << std::endl;

// useful for debugging: prints as binary:

std::cout << std::bitset<8>(actc) << std::endl;

return 0;

}

5.5 Bit packing a genome

We can now put together what we’ve just performed on a single byte and
perform it on an entire genome (Listing 5.4). Note that this early version
does not worry about subtleties where the genome string is not divisible by
the block size15. Instead, this early version will cut off the final characters
if the total number of characters is not divisible by the block size. Here we
change from using blocks of type char to blocks of type unsigned long.
This means that we now pack 32 nucleotides in a block (an unsigned long

15See the Donald Knuth quote in Chapter 2.
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has 64 bits, which holds 32 nibblets) rather than 4 nucleotides in a block.16

Later in this chapter we will see the benefit of packing into type unsigned

long rather than char.

Listing 5.4: Bit packing a genome (truncated and with dead code). The
outer loop with variable block iterates over all blocks, and the inner loop over
variable j enumerates over each nucleotide packed in a block, using a method
similar to that of Listing 5.3. Note that this implementation oversimplifies
the problem by assuming the genome divides evenly by the block size. The
implementation also suffers from unwanted dead code elimination, making
benchmarking results inaccurate.

#include "../Clock.hpp"

#include <fstream>

#include <string>

#include <bitset>

constexpr unsigned int NUCLEOTIDES_PER_BLOCK = sizeof(unsigned long) * 8

/ 2;

unsigned char nucleotide_code(char nuc) {

if (nuc == ’G’)

return 0;

if (nuc == ’C’)

return 1;

if (nuc == ’T’)

return 2;

if (nuc == ’A’)

return 3;

return -1;

}

unsigned long * bit_packed_assume_perfectly_divisible_into_blocks(const

std::string & genome) {

unsigned long num_blocks = genome.size() / NUCLEOTIDES_PER_BLOCK;

// Assumes genome is evenly divisible into blocks (if not, will cut

// off the trailing genome.size() % NUCLEOTIDES_PER_BLOCK nucleotides).

unsigned long * result = (unsigned long*)calloc(num_blocks,

sizeof(unsigned long));

16Note that this will be significantly less space efficient when we need to store many
strings that contain 4 nucleotides or fewer; however, our use-case is for large genomes.
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unsigned long i=0;

for (unsigned long block=0; block<num_blocks; ++block) {

unsigned long next_block = 0;

for (unsigned char j=0; j<NUCLEOTIDES_PER_BLOCK; ++j, ++i) {

next_block <<= 2;

next_block |= nucleotide_code(genome[i]);

}

result[block] = next_block;

}

return result;

}

int main() {

// A file of 4E6 G A T and C characters (the contents are

// unimportant):

std::ifstream fin("bigger.txt");

std::string genome;

char base;

while (fin >> base)

genome += base;

Clock c;

unsigned long*packed =

bit_packed_assume_perfectly_divisible_into_blocks(genome);

c.ptock();

// The variable packed is never used; this code will appear to run

instantly!

return 0;

}

Unfortunately, a quick benchmark of the implementation on a genome of
our choice reports a runtime of 0s; it is the result of unwanted dead code
elimination, which essentially erases our benchmark. Listing 5.5 fixes this
dead code issue in the usual style by printing the result (here it is sufficient
to simply print the first few characters of the bit-packed result17).

17The compiler is not yet smart enough to notice that we only use those first few
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Listing 5.5: Bit packing a genome (improved version of Listing 5.4). By
printing the first few blocks of the result, unwanted dead code elimination
is avoided. Now that the implementation works for benchmarking, we also
improve the bit packing routine so that it properly handles cases where the
genome size is not evenly divisible by the block size.

#include "../Clock.hpp"

#include <fstream>

#include <string>

#include <bitset>

// 8 bits in a byte (sizeof returns number of bytes) and we need 2

// bits per nucleotide (there are 4, and 2^(2 bits) = 4):

constexpr unsigned int NUCLEOTIDES_PER_BLOCK = sizeof(unsigned long) * 8

/ 2;

unsigned char nucleotide_code(char nuc) {

if (nuc == ’G’)

return 0;

if (nuc == ’C’)

return 1;

if (nuc == ’T’)

return 2;

if (nuc == ’A’)

return 3;

return -1;

}

unsigned long * bit_packed(const std::string & genome) {

unsigned long num_blocks = genome.size() / NUCLEOTIDES_PER_BLOCK;

// If it doesn’t divide evenly (* should be faster than %), add one

// more block:

if ( num_blocks * NUCLEOTIDES_PER_BLOCK != genome.size() )

++num_blocks;

unsigned long * result = (unsigned long*)calloc(num_blocks,

sizeof(unsigned long));

unsigned long i=0;

for (unsigned long block=0; block<num_blocks; ++block) {

unsigned long next_block = 0;

characters and thus only bit pack those. If we weren’t using dynamic arrays allocated at
runtime using pointers, it may be feasible that the compiler could realize this in the near
future.
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for (unsigned char j=0; j<NUCLEOTIDES_PER_BLOCK; ++j, ++i) {

next_block <<= 2;

if (i < genome.size())

next_block |= nucleotide_code(genome[i]);

}

result[block] = next_block;

}

return result;

}

int main() {

// A file of 4E6 G A T and C characters (the contents are

// unimportant):

std::ifstream fin("bigger.txt");

std::string genome;

char base;

while (fin >> base)

genome += base;

Clock c;

unsigned long*packed = bit_packed(genome);

c.ptock();

for (unsigned int i=0; i<2*NUCLEOTIDES_PER_BLOCK; ++i)

std::cout << genome[i] << " ";

std::cout << "..." << std::endl;

for (unsigned int i=0; i<2; ++i)

std::cout << std::bitset<sizeof(unsigned long)*8>(packed[i]);

std::cout << "..." << std::endl;

return 0;

}

Benchmarking 1024 replicates of our bit packing routine takes on average
0.03639s. Note that we must modify our benchmarking script to ignore the
lines that include the results on the first few characters (i.e., the code we
used to prevent unwanted dead code elimination). This can be accomplished
by running ./a.out | head -1 instead of ./a.out.
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5.6 Eliminating if statements

As we saw in Chapter 4, eliminating if statements, particularly those inside
loops, is good approach for improving performance. Here we see another
opportunity to do this: First, we can replace the function nucleotide code

with a table of 256 char values. Instead of nucleotide code(’A’) returning
3, we simply initialize our table so that nuc to code[’A’] = 3. Note that
with this table, we are using the fact that char types are really 8-bit inte-
gers underneath, and so nuc to code[’A’] is the same as nuc to code[65].
There are 256 possible ASCII characters, and so we must fill our table at
every index; however, we know in advance that the only valid queries to this
table should be nuc to code[’G’], nuc to code[’C’], nuc to code[’T’],
and nuc to code[’A’]. Thus, we will initialize the indices corresponding to
all non-nucleotide characters with an invalid value (i.e., a value not in our
nucleotide code, so that whenever we see this value, we know something is
wrong), 255.

When constructing this table, we have multiple options; we could al-
locate a table char*nuc to code = new char[256]; and then initialize
nuc to code[’A’] = 3;, etc. at the beginning of main. However, this ap-
proach has some undesirable (albeit not dire) consequences: First, this re-
quires us to initialize this array manually before it is used. This can result
in easy-to-make errors, e.g., if we forget to initialize the table or if we ac-
cidentally initialize the table after it’s used. Second, this initialization code
must run every time our program starts. Although it is not so slow, it may
nonetheless increase the overall runtime of our program.

An alternative would be to initialize the array at compile time const

unsigned char nuc to code[] = { ...};. The downside is that we must
type in each of the 256 values. Fortunately, we can write a very short pro-
gram to write this table code for us (Listing 5.6). This approach also has
an additional advantage: because we’ve declared our array to be const, the
compiler knows that it should never change, and so it may be possible to per-
form optimizations in some cases, e.g., directly replacing nuc to code[’A’]

with 3 at compile time and eschewing the array lookup operation at runtime.

Listing 5.6: Generating a table mapping uppercase nucleotide characters to
their integer codes. The output of this program can be included in another
C++ program. It only needs to be run once, pasting the output into the top
of another .cpp file.
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#include <iostream>

int nucleotide_code(char nuc) {

if (nuc == ’G’)

return 0;

if (nuc == ’C’)

return 1;

if (nuc == ’T’)

return 2;

if (nuc == ’A’)

return 3;

return -1;

}

int main() {

std::cout << "const unsigned char nuc_to_code[] = {";

for (unsigned int i=0; i<256; ++i) {

std::cout << int((unsigned char)(nucleotide_code(char(i))));

if (i != 255)

std::cout << ", ";

}

std::cout << "};" << std::endl;

return 0;

}

By pasting the output of Listing 5.6 into a .cpp file, we can create a
new implementation that uses a table instead of the if statement-based
nuc to code function (Listing 5.7).

Listing 5.7: Improved version of Listing 5.5. The nuc to code function is
replaced by a table. This table is produced by running the code in Listing 5.6.

#include "../Clock.hpp"

#include <fstream>

#include <string>

#include <bitset>

// G -> 0

// C -> 1

// T -> 2

// A -> 3

// -1uc (i.e., 255) otherwise

// This table is generated automatically as the output of
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generate_table.cpp:

const unsigned char nuc_to_code[] = {255, 255, 255, 255, 255, 255, 255,

255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,

255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,

255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,

255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,

255, 255, 3, 255, 1, 255, 255, 255, 0, 255, 255, 255, 255, 255, 255,

255, 255, 255, 255, 255, 255, 2, 255, 255, 255, 255, 255, 255, 255,

255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,

255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,

255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,

255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,

255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,

255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,

255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,

255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,

255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,

255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,

255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,

255, 255, 255, 255, 255, 255, 255, 255, 255, 255};

constexpr unsigned int NUCLEOTIDES_PER_BLOCK = sizeof(unsigned long) * 8

/ 2;

unsigned long * bit_packed(const std::string & genome) {

unsigned long num_blocks = genome.size() / NUCLEOTIDES_PER_BLOCK;

// If it doesn’t divide evenly (* should be faster than %), add one

// more block:

if ( num_blocks * NUCLEOTIDES_PER_BLOCK != genome.size() )

++num_blocks;

unsigned long * result = (unsigned long*)calloc(num_blocks,

sizeof(unsigned long));

unsigned long i=0;

for (unsigned long block=0; block<num_blocks; ++block) {

unsigned long next_block = 0;

for (unsigned char j=0; j<NUCLEOTIDES_PER_BLOCK; ++j, ++i) {

next_block <<= 2;

if (i < genome.size())

next_block |= nuc_to_code[ genome[i] ];

}

result[block] = next_block;
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}

return result;

}

int main() {

// A file of 4E6 G A T and C characters (the contents are

// unimportant):

std::ifstream fin("bigger.txt");

std::string genome;

char base;

while (fin >> base)

genome += base;

Clock c;

unsigned long*packed = bit_packed(genome);

c.ptock();

for (unsigned int i=0; i<2*NUCLEOTIDES_PER_BLOCK; ++i)

std::cout << genome[i] << " ";

std::cout << "..." << std::endl;

for (unsigned int i=0; i<2; ++i)

std::cout << std::bitset<sizeof(unsigned long)*8>(packed[i]);

std::cout << "..." << std::endl;

return 0;

}

Benchmarking 1024 repetitions of Listing 5.5 takes 0.005386s on aver-
age, a > 6× speedup over the code in Listing 5.5. However, there is still
an opportunity to remove a if statement within a loop: the line if (i <

genome.size()) is executed thousands of times, even though it will only be
false a very small number of times, and even then, only in the final block.
Here we will manually “peel” the final iteration off of the outer for loop
and manually perform that final iteration after the loop. This enables us
to ignore the case where i >= genome.size() everywhere inside the loop
(Listing 5.8).

Listing 5.8: Improved version of Listing 5.7. The final iteration of the loop
for (unsigned long block=0; block<num blocks; ++block) has been
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peeled off and manually performed after the loop. The allows us to ignore
the case where i >= genome.size() throughout that loop.

#include "../Clock.hpp"

#include <fstream>

#include <string>

#include <bitset>

// G -> 0

// C -> 1

// T -> 2

// A -> 3

// -1uc (i.e., 255) otherwise

const unsigned char nuc_to_code[] = {255, 255, 255, 255, 255, 255, 255,

255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,

255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,

255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,

255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,

255, 255, 3, 255, 1, 255, 255, 255, 0, 255, 255, 255, 255, 255, 255,

255, 255, 255, 255, 255, 255, 2, 255, 255, 255, 255, 255, 255, 255,

255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,

255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,

255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,

255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,

255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,

255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,

255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,

255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,

255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,

255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,

255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,

255, 255, 255, 255, 255, 255, 255, 255, 255, 255};

constexpr unsigned int NUCLEOTIDES_PER_BLOCK = sizeof(unsigned long) * 8

/ 2;

unsigned long * bit_packed(const std::string & genome) {

unsigned long num_blocks = genome.size() / NUCLEOTIDES_PER_BLOCK;

// If it doesn’t divide evenly (* should be faster than %), add one

// more block:

if ( num_blocks * NUCLEOTIDES_PER_BLOCK != genome.size() )

++num_blocks;

unsigned long * result = (unsigned long*)calloc(num_blocks,

sizeof(unsigned long));
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unsigned long i=0;

// Go through all but the final block:

for (unsigned long block=0; block<num_blocks-1; ++block) {

unsigned long next_block = 0;

for (unsigned char j=0; j<NUCLEOTIDES_PER_BLOCK; ++j, ++i) {

next_block <<= 2;

next_block |= nuc_to_code[ genome[i] ];

}

result[block] = next_block;

}

// Perform final block separately, and only check boundary of genome

// in final block:

unsigned long next_block = 0;

for (unsigned char j=0; j<NUCLEOTIDES_PER_BLOCK; ++j, ++i) {

next_block <<= 2;

// This is the final block: check to make sure the boundaries are met:

if (i < genome.size())

next_block |= nuc_to_code[ genome[i] ];

}

result[num_blocks-1] = next_block;

return result;

}

int main() {

// A file of 4E6 G A T and C characters (the contents are

// unimportant):

std::ifstream fin("bigger.txt");

std::string genome;

char base;

while (fin >> base)

genome += base;

Clock c;

unsigned long*packed = bit_packed(genome);

c.ptock();

for (unsigned int i=0; i<2*NUCLEOTIDES_PER_BLOCK; ++i)
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std::cout << genome[i] << " ";

std::cout << "..." << std::endl;

for (unsigned int i=0; i<2; ++i)

std::cout << std::bitset<sizeof(unsigned long)*8>(packed[i]);

std::cout << "..." << std::endl;

return 0;

}

In 1024 replicate trials, the average runtime for Listing 5.8 is 0.003620s,
a further > 1.48× speedup over Listing 5.7.

5.7 Nucleotide complements

A sequence most efficiently binds its complementary DNA sequence. ‘A’
binds with ‘T’ (and vice versa) and ‘C’ binds with ‘G’ (and vice versa).18

Listing 5.9 computes the nucleotide complement of a genome. Over 1024
replicate trials, the average runtime (of complementation only, not of loading
the genome) is 0.04262s.

Listing 5.9: Naive complement of a genome. Each nucleotide is replaced with
its complementary character.

#include "../Clock.hpp"

#include <fstream>

#include <string>

constexpr unsigned int NUCLEOTIDES_PER_BLOCK = sizeof(unsigned long) * 8

/ 2;

char nucleotide_complement(char nuc) {

if (nuc == ’G’)

return ’C’;

if (nuc == ’C’)

return ’G’;

18In the cell, DNA is usually double stranded, meaning you almost never see a single
DNA molecule without also seeing it bonded to its complementary molecule.19

19If one strand starts with a ‘T’ and the other starts with an ‘A’, which do we use for
the genome then? It’s arbitrary; one strand becomes known as the “sense” strand, while
the other is the “antisense” strand. If you know one strand’s sequence, you should easily
be able to find the sequence of the complementary strand.
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if (nuc == ’A’)

return ’T’;

if (nuc == ’T’)

return ’A’;

return -1;

}

std::string complement(const std::string & genome) {

std::string result;

for (char c : genome)

result += nucleotide_complement(c);

return result;

}

int main() {

// A file of 4E6 G A T and C characters (the contents are

// unimportant):

std::ifstream fin("bigger.txt");

std::string genome;

Clock c;

char base;

while (fin >> base)

genome += base;

std::string comp = complement(genome);

c.ptock();

for (unsigned int i=0; i<2*NUCLEOTIDES_PER_BLOCK; ++i)

std::cout << genome[i] << " ";

std::cout << "..." << std::endl;

for (unsigned int i=0; i<2*NUCLEOTIDES_PER_BLOCK; ++i)

std::cout << comp[i] << " ";

std::cout << "..." << std::endl;

return 0;

}

To speed up Listing 5.9, we could attempt to remove some if statements
from the nucleotide complement function; however, we can do far better
by using the bit-packed form.
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5.8 Hardware parallelism20

Let us first consider the possibility of performing complementation as a bit-
wise operation. Each nibblet can be complemented separately from every
other nibblet, and so bitwise complementation certainly feels like an option;
however, the code that we chose in Section 5.4 does not easily lend itself
to complementation. But that first code was arbitrarily chosen, and we are
free to choose any code we like. For this reason, we can choose a code
where bitwise not (i.e., ∼ operator) can be used to perform complementa-
tion. Let G=0b00. Then C=∼0b00=0b11. Likewise, let A=0b01. Then
T=∼0b01=0b10.

First, we will remake our table generation code (Listing 5.10). Second,
we will use that code to perform the bit-packed complement by simply per-
forming bitwise not ∼ on every block. Here we see the reason for using blocks
of type unsigned long rather than of type char: using the ∼ operator on a
char computes a 4-nucleotide complement, whereas using the ∼ operator on
an unsigned long type computes a 32 nucleotide complement. Since bitwise
not is inexpensive (like & and |, it is a true bitwise operation and carries no
information between bits in different positions), this can result in a large
speedup. Listing 5.11 performs the bit-packed complement in this manner.

Listing 5.10: Generating a table using an improved nucleotide code (revised
version of Listing 5.6). The output of this program is used in another .cpp

file.

#include <iostream>

// Alternate ordering makes it so that we can complement with the ~

operator:

int nucleotide_code(char nuc) {

if (nuc == ’G’)

return 0;

if (nuc == ’A’)

return 1;

if (nuc == ’T’)

return 2;

if (nuc == ’C’)

return 3;

return -1;

20“Why... soo... serial?”21
21“Did I ever tell you... how I got these fast runtimes?”
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}

int main() {

std::cout << "const unsigned char nuc_to_code[] = {";

for (unsigned int i=0; i<256; ++i) {

std::cout << int((unsigned char)(nucleotide_code(char(i))));

if (i != 255)

std::cout << ", ";

}

std::cout << "};" << std::endl;

return 0;

}

Listing 5.11: Bit-packed complement. The method simply traverses the bit-
packed array of unsigned long types and makes a copy that has been bitwise
notted using the ∼ operator.

#include "../Clock.hpp"

#include <fstream>

#include <string>

#include <bitset>

// Alternate ordering makes it so that we can complement with the ~

operator:

// G -> 0 = 00

// A -> 1 = 01

// T -> 2 = 10

// C -> 3 = 11

// -1uc (i.e., 255) otherwise

const unsigned char nuc_to_code[] = {255, 255, 255, 255, 255, 255, 255,

255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,

255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,

255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,

255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,

255, 255, 1, 255, 3, 255, 255, 255, 0, 255, 255, 255, 255, 255, 255,

255, 255, 255, 255, 255, 255, 2, 255, 255, 255, 255, 255, 255, 255,

255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,

255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,

255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,

255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,

255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,

255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,

255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
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255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,

255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,

255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,

255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,

255, 255, 255, 255, 255, 255, 255, 255, 255, 255};

constexpr unsigned int NUCLEOTIDES_PER_BLOCK = sizeof(unsigned long) * 8

/ 2;

// Rewritten to modify reference variables so that both result and

// num_blocks are provided (a return value could only return 1 unless

// we wrap it in std::pair<>):

void bit_pack(unsigned long * & result, unsigned long & num_blocks, const

std::string & genome) {

num_blocks = genome.size() / NUCLEOTIDES_PER_BLOCK;

// If it doesn’t divide easily (* should be faster than %), add one

// more block:

if ( num_blocks * NUCLEOTIDES_PER_BLOCK != genome.size() )

++num_blocks;

result = (unsigned long*)calloc(num_blocks, sizeof(unsigned long));

unsigned long i=0;

// Go through all but the final block:

for (unsigned long block=0; block<num_blocks-1; ++block) {

unsigned long next_block = 0;

for (unsigned char j=0; j<NUCLEOTIDES_PER_BLOCK; ++j, ++i) {

next_block <<= 2;

next_block |= nuc_to_code[ genome[i] ];

}

result[block] = next_block;

}

// Perform final block separately, and only check boundary of genome

// in final block:

unsigned long next_block = 0;

for (unsigned char j=0; j<NUCLEOTIDES_PER_BLOCK; ++j, ++i) {

next_block <<= 2;

// This is the final block: check to make sure the boundaries are met:

if (i < genome.size())

next_block |= nuc_to_code[ genome[i] ];

}
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result[num_blocks-1] = next_block;

}

unsigned long* packed_complement(const unsigned long*packed_genome,

unsigned long num_blocks) {

unsigned long * result = (unsigned long*)calloc(num_blocks,

sizeof(unsigned long));

for (unsigned long block=0; block<num_blocks; ++block)

// With our new ordering of the nucleotides, bit-wise complement

// will perform nucleotide complement!

result[block] = ~packed_genome[block];

// The above will also flip any unused bits in the last block, but

// those are to be ignored anyway.

return result;

}

int main() {

// A file of 4E6 G A T and C characters (the contents are

// unimportant):

std::ifstream fin("bigger.txt");

std::string genome;

char base;

while (fin >> base)

genome += base;

unsigned long*packed;

unsigned long num_blocks;

bit_pack(packed, num_blocks, genome);

Clock c;

unsigned long*comp = packed_complement(packed, num_blocks);

c.ptock();

for (unsigned int i=0; i<2*NUCLEOTIDES_PER_BLOCK; ++i)

std::cout << genome[i] << " ";

std::cout << "..." << std::endl;

for (unsigned int i=0; i<2; ++i)

std::cout << std::bitset<8*sizeof(unsigned long)>(packed[i]);

std::cout << "..." << std::endl;
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for (unsigned int i=0; i<2; ++i)

std::cout << std::bitset<8*sizeof(unsigned long)>(comp[i]);

std::cout << "..." << std::endl;

char ordered_nucleoties[] = {’G’,’A’,’T’,’C’}; // Order matches code

above

for (unsigned int i=0; i<2; ++i) {

unsigned long mask = -1ul & ~((-1ul)>>2); // 11000....

for (unsigned char j=0; j<NUCLEOTIDES_PER_BLOCK; ++j) {

unsigned long shifted_bit_pair = comp[i] & mask;

std::cout << ordered_nucleoties[ shifted_bit_pair >>

2*(NUCLEOTIDES_PER_BLOCK-j-1) ] << " ";

mask >>= 2;

}

}

std::cout << "..." << std::endl;

return 0;

}

In 1024 replicate trials, the bit-packed complement in Listing 5.11 takes
only 0.0003611s. This is a > 118× speedup over Listing 5.9.

5.9 Vectorization

Variants of this kind of hardware-level parallelism can be leveraged for many
types of tasks to achieve a substantial speedup. For instance, if a CPU
can process long type without emulation (via 64-bit registers that can be
operated on by the ALU22 in one assembly operation), then it may be possible
to pack 8 8-bit char types into a single 64-bit register. If the CPU supports
it, an addition operation on the 64-bit register could, for example, suppress
the carry operations on every eight bit (i.e., the 7 least-significant bits 0
through 6 can carry out when adding, but bit 7 cannot carry to bit 8 as
usual). If the chip supports this operation23, then it can be used to perform
8 char additions simultaneously. This is the idea behind vectorization, a kind

22The “arithmetic and logic unit”, the part of the CPU that does the mathematical
operations like adding int types, multiplying double types, etc.

23Such operations do add complexity to the chip, but they are not inherently diffi-
cult: suppressing carry operations should make addition more simple, as discussed above
regarding why |= is easier than +=.
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of parallelization that is based on packing multiple operands into a register
and operating on them simultaneously24.

Vectorizing in this manner is sometimes referred to as “single instruc-
tion multiple data” (SIMD), meaning that a single type of operation (e.g.,
addition) is specified, but is applied to several separate independent argu-
ments, which have been bit packed into a large register. These operations are
commonly referred to by the popular proprietary implementations on Intel
processors: SSE and the more modern AVX.

Hardware limitations are the only real limit for this approach: if you
have a machine with a true 1024-bit ALU and support for the corresponding
vectorizing operations, then you can achieve a large speedup25. Current con-
sumer hardware is on the cusp of supporting AVX51226, meaning 8 indepen-
dent operations on 64-bit double types could be performed simultaneously.
Hardware can be very important to practical performance in these cases: A
128-bit register can only hold 2 double types, and so vectorization might
not even be beneficial for double (because there may be some small over-
head cost27 that will outweigh the more muted benefit); vectorization with a
128-bit register may still prove beneficial for 32-bit float types or for 16-bit
short integer types.

5.10 Loading a genome from a text file (re-

visited)

It is not uncommon that optimized implementations of methods like bit-
packed nucleotide complement will have their performance limited by the
simple but deceptively slow step of loading the data from a file. While
reading from disk isn’t particularly fast, sequential disk access can be quite

24This is in contrast with thread-based parallelization featured in multicore chips and
GPUs, where, for example, many operations may be performed by separate ALUs at the
same time

25Assuming the addition of all that hardware didn’t trash the chip’s clock speed or
otherwise impair its performance

26Hardware evolves quickly, and no doubt, if you are reading this in the future,
AVX65536 may be commonplace; if so, don’t be a hater: close the SnapGhost app on
your flying, 8G hover scooter for a moment and take some time to reflect that it was once
the past.

27E.g., copying into special-purpose vectorized registers
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efficient28; instead, it is because of how we modify the string: frequently
appending to a string can be slow, because it will force the string to resize
(which may cost a reallocation and copying). Appending to arrays will be
discussed in greater detail in Chapter 6.

Even more efficient would be to store the file in its bit-packed form (writ-
ing the unsigned long variables in binary format so that they can be serial-
ized in directly as an array rather than in the character-by-character manner
used to read ASCII with the std::ifstream >> char operator; however, in
this case, we would need to start with a non-human readable file, and this
will be most useful for very large data sets and data centers where economies
of scale incentivize even minor decreases in disk usage. We will discuss direct
memory access and serialization of such binary files in Chapter 14.

Questions

1. [Level 1] What are some advantages and disadvantages of the kind of
hardware parallelism discussed in this chapter (compared to, for exam-
ple, writing code to use multiple threads on a multicore processor)?

2. [Level 2] Re-implement Listing 5.11 using blocks of char instead
of blocks of unsigned long. Does the performance change? Re-
implement again using unsigned long long instead of unsigned long.
Does performance change? Explain why you think this would happen.

Projects

1. [Level 2] Write a program that loads a genome from a file (the first
command line argument is the genome file name) and the file name
of a file full of short DNA reads (second command line argument).
The file of short DNA reads will have one DNA sequence per line, and
each short read will have length ≤32. The program will process each
nucleotide string in order and will print all indices where that short
string occurs in the genome. Do not use multithreading and do not use

28This is largely the result of caching. Caching in RAM will be discussed in greater
detail in Chapter 9. Disk caching is similar; just as we benefit from accessing RAM in a
sequential manner, so too do we benefit from accessing disk in a sequential manner.
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any regular expression libraries or anything libraries not #included in
this chapter. How fast can you make your code?

2. [Level 3] The same as Level 2, but you must search using only bit-
packed strings (the files should still be loaded from standard ASCII
format and then converted to bit-packed strings).



Chapter 6

Lists, Vectors, and Memory

6.1 The case for linked lists

While arrays use a single block of memory, linked lists use separate blocks
of memory, which each include a pointer to the next block. Arrays have
efficient random access1, but linked lists, not using a single block of memory,
do not have efficient random access; however, because of they are composed
of separate blocks of memory, it is possible to insert data into the middle or
onto the end of a linked list in O(1). In contrast, once an array is allocated,
it isn’t possible to directly resize it (the memory past the end of the array
may be used by something else).

On paper, when data is inserted into the middle or appended, linked lists
are the logical choice (as long as frequent random accesses are not performed).
But in practice, arrays are very efficient. One reason for this is that arrays
are contiguous in memory, and so they cache very efficiently (cache will be
discussed in greater depth in Chapter 9). Another reason for this is the
minimalism of arrays: Storing 1024 8-bit char types in an array costs 1KB
(1024 bytes). Meanwhile, every element in a linked list needs to store a 64-bit
pointer2 to the next element. Thus storing 1024 8-bit char types in a singly
linked list costs 1024 × (8+64) bits = 1024 × (1+8) bytes = 9KB (this is a
9× the memory used by the array). A doubly linked list (where each block
has a pointer to both the previous and the next element)3 would require 1024

1The ability to jump to the element at an arbitrary index in O(1)
2In nearly all modern 64-bit operating systems, a pointer uses 64 bits
3This is the most general and flexible type of linked list. Without a pointer to the

99
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× (1+16) bytes = 17KB, or 17× the memory used by the array.

6.2 Vectors: resizable arrays

Inserting data into the middle of an array requires shifting all of the dis-
placed data to the right in order to make room4. But if there were a way to
more efficiently resize an array, appending to the end of the array would be
possible, and would allow us to have the efficiency and cache performance of
an array but with the flexibility of a linked list. Resizable arrays of this form
are exactly what vectors are, e.g., the std::vector we occasionally used in
previous chapters.

How do vectors work?5 First let’s assume that there is no way to “grow”
the allocation of the array to a new size in O(1) time (because, as said above,
the memory after the end of the array may be occupied). We will revisit
this assumption later. With this limitation, resizing means something clear:
allocating a new block of memory to use as a new, larger array; however, this
new block of memory will be empty, and so the existing elements will need
to be copied into it before the new element is appended.

This leads to a problem. The first append operation will cost ∝ 1 step
(allocate a new array of size 1, copy 0 existing elements into it and then
append the new element). The second append operation will cost ∝ 2 steps:
allocate a new array of size 2, copy in the existing 1 element, append the new
element). The third append operation will cost ∝ 3 steps and so on, so that
the cost of appending n successive elements (e.g., when reading data from a
file and appending it onto a vector), will be ∈ O(1 + 2 + · · ·+n) = O(n2). In

previous element, insertion into the middle of the list becomes more complicated, because
you would need to know the element immediately before the insertion point rather than
the insertion point itself. The same goes for removing elements from the middle of a linked
list: it’s easier when the list is doubly linked, although some use cases may still be O(1)
with a singly linked list.

4For this reason, inserting data into the middle of an array is right out. If you want to
insert into the middle of something easily and you don’t want to use a linked list, then go
climb a tree.

5Right now you’re probably thinking, “It’s not exactly rocket surgery, is it? Aren’t
vectors the sort of code that’s sure to already be implemented well and turned into a
cheap commodity, the kind of code that no one in their right mind would implement
themselves?”6

6Well lucky for you, smart people are often a little crazy, so let’s do this!
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contrast, a linked list could append n successive times in O(n), and so this
means of implementing a vector would be unacceptable.

If we grow the vector by a constant k elements each time we run out of
space, then we can guarantee fewer resize operations, but we will end up with
the same problem, and the runtime will still be ∈ O(n2):

O(k + 1 + 1 + · · ·+ 1︸ ︷︷ ︸
k operations

+2k + 1 + 1 + · · ·+ 1︸ ︷︷ ︸
2k operations

+ · · · ) =

O(k + 2k + 3k + · · ·+ n) =

O

 n
k∑
i=1

ik

 =

O

(
k
n2

k2

)
=

O

(
n2

k

)
,

which will be ∈ O(n2) whenever k is a constant. When k ∈ θ(n), then this
does achieve a total runtime in O(n); however, this is essentially the same as
knowing the size of the array a priori, which is a way of essentially using a
fixed-sized array rather than a vector. So far, we have found no legitimate
resizing scheme that will perform n append operations in O(n).

6.3 Vector resizing schemes

However, consider the case where the ith resize operation grows by some
amount ai and occurs when the current size is si

7. We can show that in
order to have a total cost of O(n) for n append operations, then there are
constraints that bind the growth amount ai in terms of the size before resizing
si.

Consider the worst-case instance for overhead where you resize, but where
there are no further append operations. Clearly, if you resize to a very large

7Note that i is the number of resize operations so far, not the number of append
operations performed so far.
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array and then no more append operations follow, this can be very inefficient:
the overhead from the resizing would be much larger than the actual amount
of useful work being done. When si is the size of the array before the final
resize operation, then the worst-case scenario is where n = si + 1, meaning
there is only one append operation that forces the resize. The cost of the
final resize operation is ∈ O(si + ai), because the new array will be allocated
with size si+1 = si + ai and si values need to be copied from the previous
array, and si + ai + si = 2si + ai ≤ 2(si + ai) ∈ O(si + ai). If the total cost
of all append operations is in O(n) (this is our goal), then the cost of the
last resize operation must be in O(n), and so si + ai ∈ O(n). O(n) = O(si)
because n = si+ 1, and so si+ai ∈ O(si), and by subtracting across, we find
that ai ∈ O(si).

Note that this does not yet prove that ai must be proportional to si;
instead, it shows that ai cannot be larger than some constant multiple of si.
Intuitively, this makes sense: if we resize with ai � si, but no further append
operations are performed, then there is at least ai − si work wasted; grow-
ing the vector too aggressively would be a problem if we suddenly stopped
performing further append operations.

Let us first investigate what will happen by growing by ai = si. This is
a doubling scheme, where every time you use up the capacity of the current
array allocation, then you allocate and copy to a new array with double the
capacity.

The total cost for n append operations will be ∝ 1 + 2 + 4 + 8 + · · · si,
where the final capacity si ≥ n, because it must contain n items, and where
si ≤ 2n, because no further resize occurred. So the total cost will be

≤ ∝ 1 + 2 + 4 + 8 + · · · 2n

=

log(2n)∑
i=0

2i

= 2log(2n)+1 − 1

= 2(2n)− 1

∈ O(n).

Thus using the doubling scheme ai = si would satisfy our need.
Note that this doubling scheme will waste n − 2 slots of memory in the

worst case (if the nth and final append operation must grow from n − 1 to
2(n − 1)). We now want to ascertain whether it is possible for us to grow
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by a slower value (so that we do not waste as much RAM), or if exponential
growth is the only scheme that would suffice (this second case is equivalent
to saying ai ∈ Ω(si)).

We know that the total cost of allocation operations
∑k+1

i=0 si must be
≥ n (necessary to hold n elements), and we want the total allocation cost to
be
∑k+1

i=0 si < cn, because the cost of copy operations should be ∈ O(n) so
that the cost of all operations will be ∈ O(n). As above, the final capacity
n ≤ sk+1 ≤ 2n. From these we have

n ≤
∑k+1

i=0 si < cn ≤ csk+1.

Denoting partial sums as Tk =
∑k

i=0, we divide by the nonnegative size sk+1:

1 <

∑k+1
i=0 si
sk+1

=
Tk+1

Tk+1 − Tk
< c

1 >
Tk+1 − Tk
Tk+1

>
1

c
> 0

1 > 1− Tk
Tk+1

>
1

c
> 0

0 > − Tk
Tk+1

>
1

c
− 1 > −1

0 <
Tk
Tk+1

< 1− 1

c
< 1

0 >
Tk+1

Tk
>

1

1− 1
c

> 1

Thus, Tk+1

Tk
> 1, i.e., Tk grows at least exponentially. The finite difference

(i.e., Tk+1 − Tk) of any exponential (or faster growing) sequence is itself at
least exponential, and thus we see that sk must at least grow exponentially.
This implies sk+1

sk
≥ d > 1, equivalent to sk+ak

sk
= 1 + ak

sk
≥ d > 1, and thus

ak ≥ d− 1sk where d− 1 > 0; at every resize, we must at least grow by some
factor times the current size (or perhaps grow faster).

Above, we have already proven that ak ∈ O(sk) (if we grew too quickly,
there was a risk that the final append operation results in an expensive resize
that is never utilized). And now, we’ve just proven that ak ∈ Ω(sk) (i.e., we
must grow at least exponentially); therefore, ak ∈ θ(sk). Thus the amount
by which we grow the array must be proportional to the size of the array
itself.
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6.4 std::list vs std::vector

Here we will compare the performance of std::list (Listing 6.1) to
std::vector (Listing 6.2). We also compare these to benchmarks using
a pre-allocated vector (Listing 6.3) and an C-style array (Listing 6.4).

Listing 6.1: Benchmark appending values to a linked list (via std::list).
Values are appended using the O(1) push back function.

#include "../Clock.hpp"

#include <iostream>

#include <list>

int main() {

const unsigned long N = 128000;

const unsigned long REPS = 128;

Clock c;

for (unsigned long r=0; r<REPS; ++r) {

std::list<long> long_list;

for (unsigned long i=0; i<N; ++i)

long_list.push_back(i);

}

c.ptock();

return 0;

}

Listing 6.2: Benchmark appending values to a vector (via std::vector).

Values are appended using the the amortized Õ(1) push back function.

#include "../Clock.hpp"

#include <iostream>

#include <vector>

int main() {

const unsigned long N = 128000;

const unsigned long REPS = 128;

Clock c;

for (unsigned long r=0; r<REPS; ++r) {

std::vector<long> long_vector;

for (unsigned long i=0; i<N; ++i)

long_vector.push_back(i);
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}

c.ptock();

return 0;

}

Listing 6.3: Benchmark filling a pre-allocated vector (via std::vector). The
vector is allocated first and then filled using the [] operator (not using the
push back function)).

#include "../Clock.hpp"

#include <iostream>

#include <vector>

int main() {

const unsigned long N = 128000;

const unsigned long REPS = 128;

Clock c;

for (unsigned long r=0; r<REPS; ++r) {

std::vector<long> long_vector(N);

for (unsigned long i=0; i<N; ++i)

long_vector[i] = i;

}

c.ptock();

return 0;

}

Listing 6.4: Benchmark filling an array. The array is allocated with malloc

and filled using the [] operator.

#include "../Clock.hpp"

#include <iostream>

#include <vector>

int main() {

const unsigned long N = 128000;

const unsigned long REPS = 128;

Clock c;

for (unsigned long r=0; r<REPS; ++r) {

long*long_array = (long*)malloc(N*sizeof(long));

for (unsigned long i=0; i<N; ++i)
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Average runtime (seconds)
std::list 0.6458

std::vector 0.08937
std::vector (pre-allocated) 0.01705

unsigned long* 0.01032

Table 6.1: Runtimes to fill a linked list (Listing 6.1), vector (Listing 6.2),
pre-allocated vector (Listing 6.3), and array (Listing 6.4).

long_array[i] = i;

free(long_array);

}

c.ptock();

return 0;

}

The average runtimes over 1024 timing replicates are given in Table 6.1.
std::list is far slower than std::vector. The vector data structure offers
a nice balance of speed and flexibility (i.e., it’s size does not need to be
known during construction); however, a pre-allocated vector prevents resize
operations from being necessary (it is essentially used as an array8). A simple
array is fastest of all; it is surprisingly faster than the pre-allocated vector,
due to the overhead of the std::vector data structure.

6.5 Creating our own vector implementation

Here we will use what we’ve learned about vectors to construct our own
vector implementation. To start with, we will create a class that simply uses
new[] (and delete[] in the destructor) and which resizes by adding one
and doubling (ak = 1 + sk) when we call push back (Listing 6.5). Pay no
attention to the restrict keyword; it will be explained in Chapter 11.9

8Perhaps you’re wondering whether push back is even useful? One of the all-time great
responses I’ve heard: “So if someone shoves you, you gonna just stand there like a punk?”
But in a serious answer to the question, append operations are very important in cases
where you don’t know the size in advance.

9“Pay no attention to the restrict behind the T*!”
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Listing 6.5: An in-house vector implementation and benchmark. The array
is resized by doubling the current size and adding 1. The initial capacity for
a vector is set at 4 elements (this prevents some early resizing). The meaning
of restrict will be revealed in Chapter 11.

#include "../Clock.hpp"

#include <iostream>

template <typename T>

class Vector {

private:

unsigned long _size;

unsigned long _capacity;

T*__restrict _data;

public:

Vector():

_size(0),

_capacity(4),

_data( new T[_capacity] )

{ }

Vector(unsigned long sz):

_size(sz),

_capacity(sz),

_data( new T[_capacity] )

{ }

~Vector() {

delete[] _data;

}

void push_back(const T & element) {

if (_capacity == _size) {

_capacity = (unsigned long)(_capacity*2)+1;

T*__restrict new_data = new T[_capacity];

for (unsigned long i=0; i<_size; ++i)

new_data[i] = _data[i];

delete[] _data;

_data = new_data;

}

_data[_size] = element;

++_size;
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}

const T & operator [](unsigned long i) const {

return _data[i];

}

T & operator [](unsigned long i) {

return _data[i];

}

};

int main() {

const unsigned long N = 128000;

const unsigned long REPS = 128;

Clock c;

for (unsigned int r=0; r<REPS; ++r) {

Vector<int> vec;

for (unsigned int i=0; i<N; ++i)

vec.push_back(i);

}

c.ptock();

return 0;

}

On the same benchmark running push back, this simple in-house vector
implementation takes 0.05547s on average (in comparison, std::vector used
> 1.6× the runtime). Likewise, using a pre-allocated version (similar to
Listing 6.3), the runtime drops to 0.005567s (in comparison, the pre-allocated
std::vector used > 16× the runtime). We can improve our design further
so that it is both faster and uses less memory.

6.6 Memory allocation

The available memory to our program is essentially a large, untouched array
of blocks. When we request a block of memory (e.g., with new[] or malloc),
the first available contiguous block that is large enough will be reserved. This
block is reserved until it is freed (with delete[] or free). Let’s consider the
impact of our vector doubling scheme on these allocations.
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A doubling scheme grows exponentially, so the sizes before reallocation
will be si+1 = 2si (we add 1 more to this, but for this analysis the extra 1
will be unimportant). Let’s use Tk again, the sum of all the allocations made
thus far during the cumulative resize procedures: Tk =

∑k
i=0 si =

∑k
i=0 2i

(here we will assume we start with capacity 1 instead of 4 to again simplify
our analysis).

∑k
i=0 2i = 2k+1 − 1, and so we can see that sk+1 = 2k+1 >

Tk, meaning that allocating the new, double-length vector will require more
memory than the cumulative amount allocated thus far. Because of this,
Figure 6.1 visualizes the fact that the next allocation can never be stored in
the memory previously used (even if we did not need the previous vector to
copy from), and so the allocations will continue to creep forward in memory.
This is bad for both memory usage and performance: constantly moving to
novel memory addresses prevents the memory accesses from being cached
effectively (cache performance will be discussed in further detail in Chapter
9).

6.7 Memory and an improved vector

We have proven that the vector needs to grow exponentially in order to
achieve a total runtime of O(n), but we have not considered different expo-
nential growth constants. For example, instead of doubling the vector during
ever each resize operation, we could triple the vector (sk+1 = 3sk). Or we
could grow by 1.1: sk+1 = 1.1sk. All of these will satisfy our total runtime of
O(n), but there are pros and cons to each when it comes to practical perfor-
mance: Let us denote the growth constant as λ = sk+1

sk
. Higher constants will

have the benefit of performing fewer overall resize operations (i.e., they will
grow more quickly); however, as we’ve already seen with λ = 2, this comes
at the cost of memory usage and cache performance due to moving further
into memory. On the other hand, lower growth constants will need to resize
more times, but may possibly reuse some of the previous allocations.

To formalize this, we want sk+1 ≤
∑k

i=0 si. But even this is not strict
enough: Remember that we need to temporarily have both the old allocation
sk and the new allocation sk+1 simultaneously in memory so that we can copy
the data from the old array to the new array. So we require sk+1 ≤

∑k−1
i=0 si.

Consider an exponential series with growth constant λ:
∑k−1

i=0 si =
∑k−1

i=0 λ
i.

Without even using calculus, we can solve this series by exploiting a clever
symmetry:
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0B 1KB 2KB 3KB 4KB ...5KB 6KB 7KB 8KB

0B 1KB 2KB 3KB 4KB ...5KB 6KB 7KB 8KB

0B 1KB 2KB 3KB 4KB ...5KB 6KB 7KB 8KB

0B 1KB 2KB 3KB 4KB ...5KB 6KB 7KB 8KB

0B 1KB 2KB 3KB 4KB ...5KB 6KB 7KB 8KB

0B 1KB 2KB 3KB 4KB ...5KB 6KB 7KB 8KB

Figure 6.1: Allocation by doubling. An initially empty block of memory
(first row) is replaced by an vector that initially allocates 1KB (second row).
When that memory is exhausted, it allocates a new 2KB block and copies the
existing 1KB of data into the 2KB block (third row). Then initial 1KB block
can be freed (third row). This process continues as the vector is resized
as the result of several append operations (i.e., push back). Because the
series

∑k
i=0 2i never exceeds the next term in the sequence, 2k+1, the next

allocation will always exceed the sum of all previous allocations; therefore,
previous allocations can never be reused by this vector instance. As a result,
the allocations continue to creep forward in memory.
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Tk−1 =
k−1∑
i=0

λi = 1 + λ+ λ2 + λ3 + · · ·+ λk−1

Tk−1λ = λ+ λ2 + λ3 + λ4 + · · ·+ λk

Tk−1λ− λk = λ+ λ2 + λ3 + λ4 + · · ·+ λk−1

Tk−1λ− λk + 1 = 1 + λ+ λ2 + λ3 + λ4 + · · ·+ λk−1

= Tk−1

Tk−1(λ− 1)− λk + 1 = 0

Tk−1(λ− 1) = λk − 1

Tk−1 =
λk − 1

λ− 1
.

Thus we know we want sk+1 = λk+1 ≤ Tk−1 = λk−1
λ−1 .10

λk+1(λ− 1) ≤ λk − 1

λk(λ2 − λ) ≤ λk − 1

λk(λ2 − λ)− λk + 1 ≤ 0

λk(λ2 − λ− 1) + 1 ≤ 0.

This does not have an easy solution; however, when k � 1, then λk

will become very large, and so a negative value for λ2 − λ − 1 will en-
sure λk(λ2 − λ − 1) + 1 ≤ 0. Solving λ2 − λ − 1 = 0 for λ gives us the
boundary condition of the region we want for λ. The solution for this
can be found with the quadratic formula. We can solve this numerically
using numpy: import numpy as np; x = np.matrix([[1.0, 1.0],[1.0,

0]]); print np.linalg.eigvals(x);.11 Eigendecomposition yields two

10Because we are only interested in λ > 1 (i.e., the vector grows rather than shrinks),
so we can multiply by λ− 1 and preserve the direction of the inequality).

11Here we’re using “eigendecomposition”12 on the characteristic matrix for the recur-
rence relation, which gives the exponential bases for the closed form solutions of the
recurrence.

12From the German word “Eigen” meaning self, these are the vectors where sending
them as the input to a square matrix will produce an output that stretches or compresses,
but does not rotate. It’s like finding the direction along which an arrow shot into a
windstorm would accelerate, decelerate, reverse, or stop, but would not turn. Anyway,
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roots: we are only interested in the nonnegative of these, which is actually
the golden ratio13! This is the largest resize constant that will asymptotically
permit reuse of previously allocated memory. A vector class and benchmark
implemented with λ = 1.6 is shown in Listing 6.6.

Listing 6.6: Revised in-house vector using λ = 1.6..
#include "../Clock.hpp"

#include <iostream>

#include <assert.h>

template <typename T>

class Vector {

private:

unsigned long _size;

unsigned long _capacity;

T*__restrict _data;

public:

Vector():

_size(0),

_capacity(4),

_data( new T[_capacity] )

{ }

Vector(unsigned long sz):

_size(sz),

_capacity(sz),

_data( new T[_capacity] )

{ }

~Vector() {

delete[] _data;

}

void push_back(const T & element) {

if (_capacity == _size) {

_capacity = (unsigned long) (_capacity * 1.6 + 1);

T*__restrict new_data = new T[_capacity];

eigenvectors are also known (at least among other vectors) for being quite selfish. If an
eigenvector had 3 chocolate bars and you had -1 chocolate bars (because you owed some
people some chocolate, you know how it is), they wouldn’t even throw a couple of bars
your way so that you’d each have some. But yeah, eigenvectors are just, you know, one
of those “the rich get richer” sort. . . So much for equality (er, well, unless the eigenvalue
is 1).

13This is λ < φ ≈ 1.618
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for (unsigned long i=0; i<_size; ++i)

new_data[i] = _data[i];

delete[] _data;

_data = new_data;

}

_data[_size] = element;

++_size;

}

const T & operator [](unsigned long i) const {

return _data[i];

}

T & operator [](unsigned long i) {

return _data[i];

}

};

int main() {

const unsigned long N = 128000;

const unsigned long REPS = 128;

Clock c;

for (unsigned int r=0; r<REPS; ++r) {

Vector<int> vec;

for (unsigned int i=0; i<N; ++i)

vec.push_back(i);

/* Test: */

// for (unsigned long i=0; i<N; ++i)

// assert(vec[i] == i);

}

c.ptock();

return 0;

}

However, there is still more to consider. Note that the above proof consid-
ers the case where k is large. On the other extreme, when k is small, we are
not guaranteed that λ < 1.618 will reuse previous allocations. On the other
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extreme, we can try to force reuse of previously allocated memory when k is
small. We cannot ever reuse the first or second allocations: Trying to reuse
the first block alone yields λ2 ≤ 1, which contradicts our above assertion that
we need λ > 1; however, let’s consider k = 3: λ3 ≤ 1 + λ, where the fourth
allocation can be built from the first two allocations. The solution to this
k = 3 equation yields λ <≈ 1.32. This is benchmarked in Listing 6.7.

Listing 6.7: Revised in-house vector using λ = 1.3..

#include "../Clock.hpp"

#include <iostream>

#include <assert.h>

template <typename T>

class Vector {

private:

unsigned long _size;

unsigned long _capacity;

T*__restrict _data;

public:

Vector():

_size(0),

_capacity(4),

_data( new T[_capacity] )

{ }

Vector(unsigned long sz):

_size(sz),

_capacity(sz),

_data( new T[_capacity] )

{ }

~Vector() {

delete[] _data;

}

void push_back(const T & element) {

if (_capacity == _size) {

_capacity = (unsigned long)(_capacity*1.3 + 1);

T*__restrict new_data = new T[_capacity];

for (unsigned long i=0; i<_size; ++i)

new_data[i] = _data[i];

delete[] _data;
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_data = new_data;

}

_data[_size] = element;

++_size;

}

const T & operator [](unsigned long i) const {

return _data[i];

}

T & operator [](unsigned long i) {

return _data[i];

}

};

int main() {

const unsigned long N = 128000;

const unsigned long REPS = 128;

Clock c;

for (unsigned int r=0; r<REPS; ++r) {

Vector<int> vec;

for (unsigned int i=0; i<N; ++i)

vec.push_back(i);

/* Test: */

// for (unsigned long i=0; i<N; ++i)

// assert(vec[i] == i);

}

c.ptock();

return 0;

}

λ = 1.3 ensures that memory can be reused as early as possible (as
shown above, reusing during the third allocation is not possible), but it
will grow vectors less aggressively and therefore need to copy more data.
Clearly these opposing forces have a balance: for this reason we will also
investigate λ = 1.5. Why 1.5? Because it is between 1.32 and 1.618, but
also because we can use bit twiddling to avoid floating point math and thus
avoid an integer to float (or integer to double) conversion: Recall that x/2

is equivalent to x>>1. Thus, we can do x=(unsigned long)(x*1.5); more
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efficiently by running x = x + x>>1;, or more efficiently, x += x>>1;. This
is performed in Listing 6.8 (with the small modification that we will always
add one element to guarantee the vector grows if the initial capacity were
≤ 1).

Listing 6.8: Revised in-house vector using λ = 1.5..

#include "../Clock.hpp"

#include <iostream>

#include <assert.h>

template <typename T>

class Vector {

private:

unsigned long _size;

unsigned long _capacity;

T*__restrict _data;

public:

Vector():

_size(0),

_capacity(4),

_data( new T[_capacity] )

{ }

Vector(unsigned long sz):

_size(sz),

_capacity(sz),

_data( new T[_capacity] )

{ }

~Vector() {

delete[] _data;

}

void push_back(const T & element) {

if (_capacity == _size) {

_capacity += (_capacity>>1) + 1;

T*__restrict new_data = new T[_capacity];

for (unsigned long i=0; i<_size; ++i)

new_data[i] = _data[i];

delete[] _data;

_data = new_data;

}
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_data[_size] = element;

++_size;

}

const T & operator [](unsigned long i) const {

return _data[i];

}

T & operator [](unsigned long i) {

return _data[i];

}

};

int main() {

const unsigned long N = 128000;

const unsigned long REPS = 128;

Clock c;

for (unsigned int r=0; r<REPS; ++r) {

Vector<int> vec;

for (unsigned int i=0; i<N; ++i)

vec.push_back(i);

/* Test: */

// for (unsigned long i=0; i<N; ++i)

// assert(vec[i] == i);

}

c.ptock();

return 0;

}

Table 6.2 lists the runtimes for these in-house vector implementations,
alongside the std::list and std::vector runtimes. Using λ = 1.5 offers
the best performance, with a speedup of > 2× compared to λ = 2 and a
speedup of > 3× compared to std::vector.

6.8 Using realloc

The vector approaches thus far have all relied on allocating a new, larger
block with new[], copying data to the new block from the existing array,
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Average runtime (seconds)
std::list 0.6458

std::vector 0.08937
λ = 2 0.05547

λ = 1.6 0.06651
λ = 1.3 0.05626
λ = 1.5 0.02685

Table 6.2: Runtimes to fill a std::list (Listing 6.1), std::vector (List-
ing 6.2), vector with λ = 2 (Listing 6.5), vector with λ = 1.6 (Listing 6.6),
vector with λ = 1.3 (Listing 6.7), and vector with λ = 1.5 (Listing 6.8).

and then deleting the old array with delete[]. There is an alternative
approach that directly asks the operating system to simply resize the block
of memory we’ve already allocated. This method is called realloc, and it
is compatible with memory allocated with malloc14 and freed with free; it
cannot be used with new[] and delete[].

malloc is a function from C, which behaves similarly to C++’s new[] but
with two very important differences: First, malloc is allocated by requesting
a number of bytes (not the number of elements you want). For this reason,
allocating an array of N double types would be done with new[] by call-
ing new double[N] and would be done with malloc by calling (double*)

malloc(N*sizeof(double)). Calling malloc without multiplying the num-
ber of elements by sizeof is a common error. The second difference between
malloc and new[] is that malloc simply allocates a block of memory; if
we’ve built an array of of primitives (e.g., each element in our vector is an
int, float, char, . . . ), this doesn’t matter. But if we’ve allocated an array
of objects (e.g., each element in our vector is a std::list<int>), malloc
does not call constructors on the elements (while new[] would call the con-
structor). Likewise, when free is called on a block of memory, no destructors
will be called (the destructors would automatically be called for each element
if we were using delete[] to free memory allocated by new[]).

14And calloc. calloc is similar to malloc, except it initializes all memory cells to 0.15
15Calling malloc and then memset to zero out the allocated memory is not strictly the

same as calling calloc. This is because calloc arrays are allocated in a lazy manner and
are not actually allocated until the array has been used. In contrast malloc (and new[])
will allocate immediately. This can make calloc efficient, but it also makes it slightly
dangerous for dead code elimination when benchmarking.
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A more subtle but nonetheless important difference is that malloc will
return NULL when the allocation fails (e.g., if you ask for more memory than
your system can serve), whereas new[] will throw an exception. For this
reason, it is good practice to check the return value from malloc to ensure
it is not NULL, especially if your code is memory intensive and will run on
foreign systems rather than your own (or where the size of the data on which
your software will be applied are unknown to you).

Listing 6.9: Revised in-house vector using realloc with λ = 1.5..

#include "../Clock.hpp"

#include <iostream>

#include <cstring>

template <typename T>

class Vector {

private:

unsigned long _size;

unsigned long _capacity;

T*__restrict _data;

public:

Vector():

_size(0),

_capacity(4),

_data( (T*) malloc(_capacity*sizeof(T)) )

{

// fixme: check return value of malloc

}

Vector(unsigned long sz):

_size(sz),

_capacity(sz),

_data( (T*) malloc(_capacity*sizeof(T)) )

{

// fixme: check return value of malloc

}

~Vector() {

free( _data );

}

void push_back(const T & element) {

if (_capacity == _size) {

// Need to resize:

_capacity += (_capacity>>1) + 1;
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_data = (T*)realloc(_data, _capacity*sizeof(T));

// fixme: check return value of realloc

}

_data[_size] = element;

++_size;

}

const T & operator [](unsigned long i) const {

return _data[i];

}

T & operator [](unsigned long i) {

return _data[i];

}

};

int main() {

const unsigned long N = 128000;

const unsigned long REPS = 128;

Clock c;

for (unsigned int r=0; r<REPS; ++r) {

Vector<int> vec;

for (unsigned int i=0; i<N; ++i)

vec.push_back(i);

}

c.ptock();

return 0;

}

A more obscure function is realloc, which simply requests that an al-
located block be reallocated to now own more or less memory. This can
be very efficient if the memory after the current allocation is already free.
For example, the allocations performed in Figure 6.1 could simply be ex-
tended in O(1) (not including the time to verify that the following memory
is available) by simply rewriting the ledger so that the memory now owns the
subsequent block as well. Although realloc is not well suited to apply to
vectors of objects, it is excellent for implementing vectors of primitive types.
Listing 6.9 implements a vector that is resized using realloc. Its runtime is
0.01511s, a > 5× speedup over std::vector and a > 1.7× speedup over our
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in-house implementation using new[] and λ = 1.5. For such a simple, solid,
and ubiquitous piece of software like std::vector, these speedups are quite
impressive.

Questions

1. [Level 1] Vectors provably perform Õ(1) amortized copy operations
per appended value. Come up with an instance where a linked list
(which does not perform any additional copying as it grows) would still
be advantageous to a vector. How can a vector still be used to get the
best of both worlds?

2. [Level 2] At a scientific conference, you hear a presentation about a
vector resizing method that grows with ai = si

log(1+si)
. This method

does not grow the vector quite as aggressively, and thus helps to reuse
memory from previous allocations more effectively. What is your opin-
ion of using this method when appending very large numbers of values
to a vector? Come up with mathematical and empirical evidence (i.e.,
a plot of runtimes) to justify your answer.

3. [Level 3] Using a vector implemented with new[], use different values
of λ ∈ [1.3, 1.61] and plot two series: First, the total number of copy
operations performed to append 128000 values (as a function of λ).
Second, the largest difference in any two memory addresses used during
the entire process of pushing 128000 values (as a function of λ).
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Chapter 7

Maps, Hash Tables, and Sorted
Vectors

7.1 Maps

Maps are data structures for associating key-value pairs. They’re somtimes
called “dictionaries” because of their functional resemblance to the books of
alphabetically sorted words with entries holding the definition (and etymol-
ogy and pronunciation) alongside the word. “Map” is the mathematical term
for a function that translates a “key” from an input set (in the case of an
English dictionary, a word) into the corresponding “value” from a output set
(in the case of an English dictionary, the definition). These data structures
are quite important for easy manipulation of data, and are thus used quite
frequently.

Trivial implementations would simply store a list or vector of n key-value
pairs in arbitrary order and then search them in n key comparisons1; however,
using a sorted vector like an English dictionary will allow lookup in O(log(n))
steps rather than n steps2.

1To be perfectly precise about the runtime, we need to consider that each of these calls
to the key == operator may cost more than O(1). For example, checking whether two
strings of length k are equal costs O(k) in the worst case, because we must go through every
character when they are equal in order to verify; when they are not equal, then calling ==

can be much faster (i.e., we can return false on the first non-equal characters), and so
the average-case runtime will depend on the length of the strings as well as the degree of
similarity between them.

2A sorted linked list is not of much use, because we cannot jump halfway through the

123
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There is a limitation to storing maps via arrays or via vectors: as we
saw in Chapter 6, appending data to the end of a vector can be made effi-
cient (amortized Õ(1) using exponential growth), but inserting data into the
middle of any kind of array (vectors included) will always require shifting all
following elements to the next index, and thus cost O(n) in the worst case.
For this reason, neither vectors nor linked lists will perform well in practice
when we need to dynamically add key-value pairs to the map.

7.2 Balanced binary trees

Balanced binary trees offer a means by which we can guarantee that each
insertion will cost ∈ O(log(n)) in the worst case and inductively preserve our
sorted order while inserting. Thus, we are able to use the sorted order to
lookup key-value pairs in O(log(n)) steps. Binary trees are like linked lists
in that they function using pointers3 These pointers can make a fairly high
overhead when the key and value types are both quite small.

Compared to storing data in a vector and performing each lookup by
scanning over all n items, balanced binary trees are quite fast.4 Balanced
binary trees are the data structures used by the std::map class.

Listing 7.1 generates several random strings, inserts them as keys into
maps of std::string to unsigned long, and then measures the time to
traverse both maps and modify the unsigned long value associated with
each key. Running the benchmark with the balanced binary tree used by
std::map takes 2.493s.

Listing 7.1: Benchmark measuring the time to modify values associated with
keys in two std::map types. Values are modified using the Θ(log(n)) []

operator.

#include "../Clock.hpp"

#include <iostream>

#include <string>

#include <vector>

#include <map>

remaining list in O(1) steps as we can with an array or a vector.
3Each node has two node pointers (to the left and right children) or three node pointers

(to the left and right children and the parent).
4But as we will see, this is like saying, “That’s the fanciest restaurant between the

check cashing place and the cash4gold place”: overall, it isn’t often the best you can get.
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std::string random_string() {

std::string res = "";

const unsigned int len=32;

for (unsigned char i=0; i<len; ++i)

// Append a random capital letter:

res += ’A’ + (rand() % 26);

return res;

}

int main() {

const unsigned long N = 100000;

const unsigned long REPS = 16;

std::vector<std::string> all_strs;

std::map<std::string, unsigned long> str_to_int_a;

std::map<std::string, unsigned long> str_to_int_b;

for (unsigned long i=0; i<N; ++i) {

std::string name = random_string();

all_strs.push_back(name);

str_to_int_a[name] = i;

str_to_int_b[name] = N-i;

}

Clock c;

for (unsigned long r=0; r<REPS; ++r)

for (const std::string & name : all_strs) {

++str_to_int_b[name];

str_to_int_a[name] -= str_to_int_b[name];

}

c.ptock();

return 0;

}

7.3 Hash tables

Balanced binary trees like those used by std::map hold the data in a sorted
order; however, this is only one means by which we can implement a map.
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Another approach is to convert each key into an integer using a deterministic
“hash” function h, and then use that integer as an index in an array (a “hash
table”). This approach does not necessarily keep the keys in sorted order,
and so, unlike balanced binary trees, there is no guarantee in general that key
insertion and lookup will cost ∈ O(log(n)). Hash tables are inefficient (e.g.,
O(n2)) when many distinct objects x, y, . . . produce similar hashes h(x) =
h(y); thus the performance of hash tables are highly dependent upon the
hash function and the specific keys on which it will be applied.

From this, the question naturally arises: “Why bother using hash ta-
bles when balanced binary trees have guaranteed performance on arbitrary
data?”5 For one thing, hash tables can be implemented in a very lightweight
manner (e.g., not using as many pointers per key-value pair inserted). But
additionally, hash functions can also exploit the parallel nature of hardware,
in which several bits in the hash can be computed simultaneously6. The
specifics of engineering a good hash function will be described in greater
detail in Chapter 8.

Listing 7.2 repeats the same task as in Listing 7.1, but using
std::unordered map7 instead of std::map (and using the default hash func-
tion for std::string). This small change significantly improves perfor-
mance: the benchmark now runs in 0.6739s. This is a > 3× speedup over
the balanced binary tree-based implementation via std::map.

Listing 7.2: Benchmark measuring the time to modify values associated with
keys in two std::map types. Values are modified using the [] operator,
which has a runtime dependent on the hash function and data used.

#include "../Clock.hpp"

#include <iostream>

#include <string>

#include <vector>

#include <unordered_map>

std::string random_string() {

std::string res = "";

5This is often voiced by the people who refused to lend you their wood and straw SR-71
in a previous chapter. In case hashes are ever discussed, such people often carry a business
card, which reads, “Give up your inquiries, which are completely useless.”

6Just as x+y, arr[i], etc., can be computed via hardware in O(1) for fixed-length
integers.

7So called because it does not store data in a sorted order as do the balanced binary
trees implementing std::map.
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const unsigned int len=32;

for (unsigned char i=0; i<len; ++i)

// Append a random capital letter:

res += ’A’ + (rand() % 26);

return res;

}

int main() {

const unsigned long N = 100000;

const unsigned long REPS = 16;

std::vector<std::string> all_strs;

std::unordered_map<std::string, unsigned long> str_to_int_a;

std::unordered_map<std::string, unsigned long> str_to_int_b;

for (unsigned long i=0; i<N; ++i) {

std::string name = random_string();

all_strs.push_back(name);

str_to_int_a[name] = i;

str_to_int_b[name] = N-i;

}

Clock c;

for (unsigned long r=0; r<REPS; ++r)

for (const std::string & name : all_strs) {

++str_to_int_b[name];

str_to_int_a[name] -= str_to_int_b[name];

}

c.ptock();

return 0;

}

7.4 Associated vectors

Thus far we have focused on maps that can grow dynamically at the same
time we query them by their keys. In that case, balanced binary trees and
hash tables are often the best practical performance we can achieve; however,
in many cases, we will insert all key-value pairs into the map and then do work
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that needs to look up values from keys. An example of this more constrained
use-case would be an English dictionary: words are inserted offline, and then
the dictionary is finalized. Only after finalizing the set of keys (i.e., the set
of words contained) do we need to put the dictionary into a bound book in
an order that facilitates quick retrieval. This may sound like a small benefit,
but it is important because it permits us to insert the key-value pairs in a
lazy manner, by simply appending them to a vector. Once all insertions are
finished, this vector of key-value pairs can be sorted by key in O(n log(n)) or
better8.

Assuming the sort costs O(n log(n)), this doesn’t achieve any theoreti-
cal speedup over a balanced binary tree: the balanced binary tree requires
O(log(n)) steps to lookup each of the n values inserted, also resulting in a
runtime in O(n log(n)). But in practice, sorting is a very lightweight opera-
tion compared to constructing a balanced binary tree. Furthermore, looking
up a key in a sorted array can be performed in O(log(n)), but with a faster
runtime constant than that available to a pointer-based implementation of a
balanced binary tree.9

But there is an even more important potential speedup: when processing
two maps with identical collections of keys, the sorted arrays of key-value
pairs from each map will not require lookup at all: if key x occupies index i in
the sorted key-value array in map m a, then the key x must also occupy index
i in the sorted key-value array in map m b (when both maps use identical
collections of keys). This means that processing can proceed without any
lookup steps at all, and by using integer array indices rather than lookup by
key.

When two maps do not use identical key sets, a similar speedup can be
employed, which will traverse both arrays in O(n) and skip the keys found
in one map but not found in the other. This process is highly reminiscent of
the “merge” step in merge sort.

Thus, when key-value pairs are rarely inserted, but are frequently ac-
cessed, using sorted vectors or sorted arrays can pose a significant speedup
over both balanced binary trees and hash tables.

Listing 7.3 uses a remarkable 0.01229s, a > 54× speedup over the hash

8Keys for which we only have a < operator cannot be sorted faster than O(n log(n)),
but other types of keys, e.g., strings and fixed-precision integers, can often be sorted more
quickly.

9This is partly because of cache performance, which is quite good when processing
contiguous data structures like arrays.
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table-based implementation and > 202× speedup over the balanced binary
tree-based implementation.

Listing 7.3: Benchmark measuring the time to modify values associated with
keys via sorting. Vectors of key-value pairs are constructed and sorted. Be-
cause the key collections are known to be identical in advance, the vectors
are now aligned by keys, and so the same keys can be retrieved by simply
visiting the same integer indices.

#include "../Clock.hpp"

#include <iostream>

#include <string>

#include <vector>

#include <algorithm>

std::string random_string() {

std::string res = "";

const unsigned int len=32;

for (unsigned char i=0; i<len; ++i)

// Append a random capital letter:

res += ’A’ + (rand() % 26);

return res;

}

int main() {

const unsigned long N = 100000;

const unsigned long REPS = 16;

std::vector<std::pair<std::string, unsigned long> > str_and_int_a;

std::vector<std::pair<std::string, unsigned long> > str_and_int_b;

for (unsigned long i=0; i<N; ++i) {

std::string name = random_string();

str_and_int_a.push_back( std::make_pair(name, i) );

str_and_int_b.push_back( std::make_pair(name, N-i) );

}

std::sort(str_and_int_a.begin(), str_and_int_a.end());

std::sort(str_and_int_b.begin(), str_and_int_b.end());

Clock c;

// Now the keys are already aligned; now we can simply index them

// with integers:

for (unsigned long r=0; r<REPS; ++r)
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for (unsigned long i=0; i<N; ++i) {

++str_and_int_b[i].second;

str_and_int_a[i].second -= str_and_int_b[i].second;

}

c.ptock();

// Can also easily look up val from name in log(n) time; in contrast

// to a tree (map) or hash table (unordered_map), a sorted vector is

// more lightweight.

return 0;

}

7.5 Member variables

One common use-case for maps is to associate objects with values after the
fact. For example, when constructing a graph, the designer of the graph
package may not have included the ability to store data for the color of each
Node type; however, using the Node (or, Node*, a pointers to a node) as
keys, one could easily construct a map that allows us to retrieve or modify
the color of a particular node. Importantly, it is possible to do this without
modifying any of the source code from the graph package10.

This flexibility comes at a price. A faster approach would be to simply
encode an integer int color attribute via a member variable in the Node

class. Pairing these at compile time essentially uses the address of each Node

in memory to construct a perfect hash table (i.e., a hash table guaranteed
not to have any collisions). Using a member variable in this way can achieve
significantly higher performance, but does not easily allow us to use the
mapping from Node to color attribute at runtime. For example, a balanced
binary tree or hash table-based map would more easily address the use-case
in which we want to allow the user to input the key at runtime and lookup
up or modify the color associated with it.

Listing 7.4 performs a second benchmark, which is easily suited for a
member variable rather than a map. In the first implementation of this
benchmark, strings are used to map to integers. It runs in 0.9016s. Listing 7.5

10This becomes more important when writing object-oriented code, where we create one
working widget and hopefully it works so well that we need never revisit that task.



7.5. MEMBER VARIABLES 131

repeats this with a member variable rather than a map, and runs in 0.004165s
(a > 216× speedup over the std::map-based version).

Listing 7.4: A benchmark performing association via std::map.

#include "../Clock.hpp"

#include <iostream>

#include <string>

#include <vector>

#include <map>

std::string random_string() {

std::string res = "";

const unsigned int len=32;

for (unsigned char i=0; i<len; ++i)

// Apped a random capital letter:

res += ’A’ + (rand() % 26);

return res;

}

int main() {

const unsigned long N = 100000;

const unsigned long REPS = 16;

std::vector<std::string> all_strs;

std::map<std::string, int> str_to_int;

for (unsigned long i=0; i<N; ++i) {

std::string name = random_string();

all_strs.push_back(name);

str_to_int[name] = i;

}

Clock c;

for (unsigned long r=0; r<REPS; ++r)

for (const std::string & name : all_strs)

++str_to_int[name];

c.ptock();

return 0;

}



132 CHAPTER 7. MAPPING

Listing 7.5: A reimplementation of Listing 7.5 via a member variable rather
than association via std::map.

#include "../Clock.hpp"

#include <iostream>

#include <string>

#include <vector>

#include <map>

struct StrAndInt {

std::string name;

long val;

};

std::string random_string() {

std::string res = "";

const unsigned int len=32;

for (unsigned char i=0; i<len; ++i)

// Apped a random capital letter:

res += ’A’ + (rand() % 26);

return res;

}

int main() {

const unsigned long N = 100000;

const unsigned long REPS = 16;

std::vector<StrAndInt> all_objs;

for (unsigned long i=0; i<N; ++i) {

std::string name = random_string();

all_objs.push_back({name,long(i)});

}

Clock c;

for (unsigned long r=0; r<REPS; ++r)

for (StrAndInt & obj : all_objs)

++obj.val;

c.ptock();

return 0;

}



7.6. A REMINDER AGAINST PREMATURE OPTIMIZATION 133

7.6 A reminder against premature optimiza-

tion

In many cases, maps (whether through balanced binary trees or hash tables)
are great tools for quickly hacking out an idea, and so they are inespensible
in scripting langauges like Python. Do not let a focus on performance be a
distraction where performance is not a limiting factor.11

Questions

1. [Level 1] Write a simple program to insert many 32-character strings
of capital letters (as keys) with random integer values. Iterate through
all keys with first character ’A’ and sum up the corresponding values.
How simply can you implement this with std::map? And how long
does this take to run?

2. [Level 2] Of the methods covered in this chapter, which is the high-
est performance method applicable to the method from the question
above? How much faster is the superior approach? Assume that all
values must be inserted into your map-like data structure (even those
that do not start with ’A’), but where only those that begin with ’A’
will have their value summed.

3. [Level 3] Assume your CPU natively supports b-bit fixed-precision
integers, and that these are used for hashing. What is the largest
array length n on which we can use one of these b-bit integers as an
index? If we have a perfect hash (“perfect hashing” denotes hashing
that provably produces 0 collisions) and the hash function itself uses
a constant number of native integer operations, what is the cost of

11Sometimes, when reading in a strange file format, C++’s std::map and
std::unordered map or Python’s dict are very helpful, especially for making a first work-
ing version of the code, and starting with a map-free implementation can sometimes drive
you crazy.12

12“I saw the most mediocre minds of my generation destroyed by maplessness...”
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inserting into the hash table? What is the cost of looking up an item
in the hash table? What would be the cost for these operations when
using a balanced binary tree containing n objects? What is the speedup
of perfect hashing relative to the balanced binary tree (in terms of n)?
Why would this be?



Chapter 8

Creating Fast Hashes

Chapter 7 discusses maps and highlights the frequent practical advantage of
hash tables over balanced binary trees; however, this advantage came with a
caveat: hash tables will only be efficient when we can create hash functions
that produce few collissions between distinct objects1. This chapter explores
the practical task of constructing a hash on a std::set of objects.

8.1 Initial implementation via std::set

Our baseline approach is to avoid hashes altogether: in this case, we store
our set of sets by simply using std::set<std::set<T> > (Listing 8.1). This
implementation will use the < operator when inserting elements into each set
and when inserting the sets into the set of sets. When each set is filled with
several random values ∈ {0, 1, 2, . . . 255} and when we build a set of 218 such
sets, the runtime is 11.18s.

Listing 8.1: An ordered set of ordered sets, implemented via
std::set<std::set<T> >.

#include "../Clock.hpp"

#include <set>

int main() {

const unsigned long NUMBER_SETS=1<<18;

const unsigned long SET_INSERTIONS=1<<8;

1Note that we often say “distinct” objects, because hashes on the same object neces-
sarily give the same result (because the hash function is deterministic).

135
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const unsigned long MAX_ELEMENT_PLUS_ONE=1<<8;

srand(0);

Clock c;

std::set<std::set<unsigned int> > collection_of_sets;

for (unsigned int i=0; i<NUMBER_SETS; ++i) {

std::set<unsigned int> st;

for (unsigned int j=0; j<SET_INSERTIONS; ++j)

st.insert( rand() % MAX_ELEMENT_PLUS_ONE );

collection_of_sets.insert(st);

}

c.ptock();

return 0;

}

8.2 Properties for a hash on std::set<T>

Before we write the hash function h for a std::set<T>, we need to consider
a few properties that we want. One such property is commutativity: we
need h({x, y, . . .} = h({y, x, . . .}). Also, we need our hash function to be
deterministic, so that we ensure feeding in identical sets will produce an
identical hash. Also, we would like the runtime of calling h to be at most
linear in the number of elements in the set. Lastly, our hash function should
be flexible so that it adapts easily to different types T contained within the
set. This last requirement naturally leads us to consider using the standard
hash (if one is available) on each element of type T.

8.3 Hashing via XOR

One simple approach (which is commutative, efficient, and can easily use
std::hash<T> on each element in the set) is to simply chain together the
XOR of the hashes of all elements in the set (Listing 8.2). When run on the
same benchmark (generating 218 sets, each of which contains several values
∈ {0, 1, 2, . . . 255}), the runtime is 25.68s, which is significantly slower than
simply using std::set<std::set<T> >.
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Listing 8.2: A hash set of ordered sets, implemented via
std::unordered set<std::set<T> > and an XOR hash.

#include "../Clock.hpp"

#include <functional>

#include <set>

#include <unordered_set>

template <typename T>

struct SetHash {

std::size_t operator() (const std::set<T> & s) const {

std::hash<T> single_hash;

std::size_t combined_hash_value = 0;

for (const T & obj : s) {

unsigned long single = single_hash(obj);

combined_hash_value ^= single;

}

return combined_hash_value;

}

};

int main() {

const unsigned long NUMBER_SETS=1<<18;

const unsigned long SET_INSERTIONS=1<<8;

const unsigned long MAX_ELEMENT_PLUS_ONE=1<<8;

srand(0);

Clock c;

std::unordered_set<std::set<unsigned int>, SetHash<unsigned int> >

collection_of_sets;

for (unsigned int i=0; i<NUMBER_SETS; ++i) {

std::set<unsigned int> st;

for (unsigned int j=0; j<SET_INSERTIONS; ++j)

st.insert( rand() % MAX_ELEMENT_PLUS_ONE );

collection_of_sets.insert(st);

}

c.ptock();

return 0;

}
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8.4 Hashing via sum

Let’s dissect why the XOR implementation performs poorly: Consider that
std::hash<int>(i) returns i, and so the element hashes will only generate
8 bits of information. By only XORing them together, we never leave the 8
least-significant bits; therefore, the XOR set hash can only distinguish 256
possible sets, and so multiple non-equivalent sets will produce the same hash.
This is a collision; when looking up an element with a non-unique hash, the
table will be forced to lookup all items with that hash, and so the runtime
of looking up all items becomes slow: the total of pairs of items sharing the
same hash is | {x : h(x) = h(y) ∧ x 6= y} |, which grows quadratically with
the number of items sharing the same hash:

(| {h(x)=i} |
2

)
.2 Thus the XOR set

hash performs slowly because many distinct sets share the same hash, and
thus there is a non-trivial quadratic term in our runtime.

Because we are using 64-bit unsigned long types for our hash, collisions
may be avoided by using the higher-significance bits (rather than limiting
ourselves to the least-significant 8 bits). But the question remains how best
to do this. One option that bears a resemblance to the XOR approach is
to simply sum the hashes of the elements in the set (Listing 8.3). By sum-
ming the hashes, we maintain commutativity (i.e., h({x, y}) = h({y, x}))
but where XOR will never use the higher-order bits, the sum has a pos-
sibility of using them3, even though the hashes of each element is still in
{0, 1, 2, . . . 255}. By using this strategy, the performance improves, reaching
11.66s (a > 2× speedup over the XOR approach, although still only roughly
equal to the std::set<std::set<T> > approach).

Listing 8.3: A hash set of ordered sets, implemented via
std::unordered set<std::set<T> > and a sum hash.

#include "../Clock.hpp"

#include <functional>

#include <set>

#include <unordered_set>

template <typename T>

struct SumSetHash {

std::size_t operator() (const std::set<T> & s) const {

std::hash<T> single_hash;

2>mfw 2many collisions : ( ×∞
3Because of carry operations
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std::size_t combined_hash_value = 0;

for (const T & obj : s) {

unsigned long single = single_hash(obj);

combined_hash_value += single;

}

return combined_hash_value;

}

};

int main() {

const unsigned long NUMBER_SETS=1<<18;

const unsigned long SET_INSERTIONS=1<<8;

const unsigned long MAX_ELEMENT_PLUS_ONE=1<<8;

srand(0);

Clock c;

std::unordered_set<std::set<unsigned int>, SumSetHash<unsigned int> >

collection_of_sets;

for (unsigned int i=0; i<NUMBER_SETS; ++i) {

std::set<unsigned int> st;

for (unsigned int j=0; j<SET_INSERTIONS; ++j)

st.insert( rand() % MAX_ELEMENT_PLUS_ONE );

collection_of_sets.insert(st);

}

c.ptock();

return 0;

}

8.5 Scaling by a prime

Summing the hash values will use the higher-significance bits more effectively,
but for such small element values, it will not reach the most significant bits
in a 64-bit unsigned long. For this reason, it may be helpful to scale the
hashes of the elements in the set when we sum them. However, some scaling
factors will not “scatter” the information into several bits as we hope: for
example, scaling by 2k will simply shift the hash result left by k bits (thus
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moving the bits we have, but keeping the number of bits in use constant4).
The same phenomenon will occur when we scale by a constant that contains
2 in its prime factors, even if it is not a power of 2.

An intuitive choice is to simply avoid scalars that contain any non-trivial
factors5, would be to scale the values by a prime number, preferably a fairly
large value6, which will be capable of moving the information from the hashes
of the elements into the higher-significance bits. A downside of multiplying
the hashes by a constant is that, in general, elements with small hashes (like
those considered) will scale to large values and thus may lose variability in
the lower-significance bits. For this reason, we can XOR in the element hash
again. The result is a version of the sum set hash that has been modified
(Listing 8.4).

Listing 8.4: A hash set of ordered sets, implemented via
std::unordered set<std::set<T> > and a scaled sum hash.

#include "../Clock.hpp"

#include <functional>

#include <set>

#include <unordered_set>

template <typename T>

struct SumPrimeSetHash {

std::size_t operator() (const std::set<T> & s) const {

std::hash<T> single_hash;

std::size_t combined_hash_value = 0;

for (const T & obj : s) {

unsigned long single = single_hash(obj);

combined_hash_value += 2147483647ul*single ^ single;

}

return combined_hash_value;

}

};

int main() {

const unsigned long NUMBER_SETS=1<<18;

const unsigned long SET_INSERTIONS=1<<8;

const unsigned long MAX_ELEMENT_PLUS_ONE=1<<8;

srand(0);

4Or, if we shift too far, actually decreasing the number of bits in use.
5I.e., we exclude the number itself and 1, both of which must divide evenly.
6Thus not a power of 2, since 2 is the only even prime.
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Clock c;

std::unordered_set<std::set<unsigned int>, SumPrimeSetHash<unsigned

int> > collection_of_sets;

for (unsigned int i=0; i<NUMBER_SETS; ++i) {

std::set<unsigned int> st;

for (unsigned int j=0; j<SET_INSERTIONS; ++j)

st.insert( rand() % MAX_ELEMENT_PLUS_ONE );

collection_of_sets.insert(st);

}

c.ptock();

return 0;

}

8.6 “Universal hashing”

Thus far we’ve approached the choice of hash fairly heuristically7; let’s now
attack this problem more theoretically. Consider a hash that scales the first
element in the set by one constant a1, scales the second element in the set by
another constant a2, etc. The raw result will be of the form h(x) =

∑
i ai ·xi

(where x is a set).8

A collision occurs when two distinct sets x 6= y produce the same hash:

h(x) =
∑
i

ai · xi = h(y) =
∑
i

ai · yi.

We have not yet developed a strategy for choosing a1, a2, . . ., but hopefully
the goal of avoiding collisions will help us. We could try to approach the

7[Reaches for bottle of hand sanitizer]
8Note that these operations are not necessarily commutative if two sets with identical

contents iterate through those contents in a different order9; however, std::set works by
keeping the values in a sorted order, just as std::map does. Thus, this approach is safe
for hasing std::set objects, but may need to be refined for hashing std::unordered set

objects.
9A sorted order is not necessary, but a consistent order on sets with the same contents

is.
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problem by choosing values a1, a2, . . . for which collisions are rare10. This
means that we would like there to be few instances where∑

i

ai · xi =
∑
i

ai · yi∑
i

ai · (xi − yi) = 0

a1 · (x1 − y1) +
∑
i>1

ai · (xi − yi) = 0

a1 · (x1 − y1) =
∑
i>1

ai · (yi − xi).

We are interested in the case where x 6= y, and so we know that there
must be at least some elements differing between x and y; thus, without loss
of generality11, assume that x1 6= y1 and so x1 − y1 6= 0. We would like to
prove that, given a2, a3, . . ., there are few values of a1 for which this equation
would hold.

The means to do this is not so clear. But, from number theory (see
Appendix A12), we do know that nonzero integers have unique inverses
modulo any prime. Thus, given x1 − y1 6= 0, there is a unique number
a1 ∈ {1, 2, . . . p− 1} satisfying

a1 · (x1 − y1) ≡
∑
i>1

ai · (yi − xi) (mod p)13

for some prime p.

This means that if we choose random values for a1, a2, a3, . . ., each ∈
{1, 2, . . . p − 1}, there is only one possible a1 that would lead to a collision
between unequal objects, or equivalently Pr(h(x) = h(y)) = 1

p−1 (because

there are p − 1 possible choices for a1, but only one will produce h(x) =
h(y)). Thus, if we choose a large prime number for p, we should be able
to dramatically decrease the number of collisions. This strategy is called

10Importantly, we don’t know the x and y in advance, so we would need to show that
collisions are rare in general, not only rare for particular sets x and y.

11“w.l.o.g.”
12Power level hidden in appendix
13Using u ≡ v (modp) is the same as saying u mod p = v mod p or u % p == v % p in

C++. The ≡ symbol simply applies the modulo to both sides.
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“universal” because it can be used to guarantee that the probability of a
collision is ≤≈ 1

m
where m is the size of the hash table.

Listing 8.5 uses p = 18446744073709551557, which was found by simply
starting at 264 − 1 and counting down to the first prime14 The listing also
introduces a small random number generator because the benchmark uses
rand() to insert random elements into the sets, and calling srand to seed
our random ai (and thus make the hash deterministic) at the start of each
set hash call will alter the values inserted into the sets.

Listing 8.5: A hash set of ordered sets, implemented via
std::unordered set<std::set<T> > and a prime-based universal hash
function.

#include "../Clock.hpp"

#include <functional>

#include <set>

#include <unordered_set>

// Some arbitrary random number generator from StackOverflow:

class SimpleRandomGenerator {

private:

unsigned long _random_value;

static unsigned long ROL(unsigned long v, unsigned char shift) {

return ((((v) >> ((sizeof(v) * 8) - (shift))) | ((v) << (shift))));

}

public:

SimpleRandomGenerator(unsigned long seed):

_random_value(seed)

{ }

unsigned long next() {

_random_value = _random_value * 214013L + 2531011L;

_random_value = ROL(_random_value, 16);

return _random_value;

}

};

template <typename T>

class UniversalSetHash {

public:

static const unsigned long biggest_64_bit_prime =

14I.e., it is the largest prime number that fits in a 64-bit unsigned long.
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18446744073709551557ul;

std::size_t operator() (const std::set<T> & s) const {

SimpleRandomGenerator srg(0);

std::hash<T> single_hash;

std::size_t combined_hash_value = 0;

for (const T & obj : s) {

unsigned long single = ( single_hash(obj) * srg.next() ) %

biggest_64_bit_prime;

combined_hash_value += single;

}

combined_hash_value += ( s.size() * srg.next() ) %

biggest_64_bit_prime;

return combined_hash_value;

}

};

int main() {

const unsigned long NUMBER_SETS=1<<18;

const unsigned long SET_INSERTIONS=1<<8;

const unsigned long MAX_ELEMENT_PLUS_ONE=1<<8;

srand(0);

Clock c;

std::unordered_set<std::set<unsigned int>, UniversalSetHash<unsigned

int> > collection_of_sets;

for (unsigned int i=0; i<NUMBER_SETS; ++i) {

std::set<unsigned int> st;

for (unsigned int j=0; j<SET_INSERTIONS; ++j)

st.insert( rand() % MAX_ELEMENT_PLUS_ONE );

collection_of_sets.insert(st);

}

c.ptock();

return 0;

}

On the benchmark, the runtime is 9.894s, over 1 second faster than the
std::set<std::set<T> > approach.
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8.7 Investigating the number of collisions

Let’s now consider the number of insertions into the
std::unordered set<std::set<T> > where the hashes of two sets
produce the same value.15.

Listing 8.6 counts the number of insertions using a hash value that has
already occurred and the number of “collisions”18 The results are shown in
Table 8.1. Our universal hash achieved no collisions19.

Listing 8.6: Counting the collisions, implemented with various hash algo-
rithms on a set.

#include <iostream>

#include <functional>

#include <set>

#include <map>

#include <random>

constexpr unsigned long BIG_PRIME_NEAR_POWER_OF_TWO = 2147483647ul;

// A prime with fairly good scattering of 0 and 1 bits:

constexpr unsigned long BIG_PRIME_WITH_GOOD_BINARY_SCATTERING =

3644798167ul;

template <typename T>

struct XORSetHash {

std::size_t operator() (const std::set<T> & s) const {

std::hash<T> single_hash;

std::size_t combined_hash_value = 0;

for (const T & obj : s) {

unsigned long single = single_hash(obj);

combined_hash_value ^= single;

}

return combined_hash_value;

15These are meant to measure the number of collisions, but to be technically precise, we
don’t make sure the sets aren’t identical to one another here, so to be truly pedantic, we
haven’t proven all of these to be collisions. Any deterministic hash function16 will produce
h(x) = h(y) when x = y17.

16As long as it is also “pure”, i.e., it doesn’t modify global variables
17“Cutting-edge wildlife research at the U of MT confirms that bears really do use the

toilet in the woods.”
18Again, to be pedantic: we haven’t proven them precisly to be collisions, but it’s close

enough for this discussion.
19“New York Matinee called it ‘a playful but mysterious little dish’.”
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}

};

template <typename T>

struct SumSetHash {

std::size_t operator() (const std::set<T> & s) const {

std::hash<T> single_hash;

std::size_t combined_hash_value = 0;

for (const T & obj : s) {

unsigned long single = single_hash(obj);

combined_hash_value += single;

}

return combined_hash_value;

}

};

template <typename T>

struct SumPrimeSetHash {

std::size_t operator() (const std::set<T> & s) const {

std::hash<T> single_hash;

std::size_t combined_hash_value = 0;

for (const T & obj : s) {

unsigned long single = single_hash(obj);

combined_hash_value += BIG_PRIME_WITH_GOOD_BINARY_SCATTERING*single

^ single;

}

return combined_hash_value;

}

};

template <typename T, unsigned long PRIME>

struct XORPrimeSetHash {

std::size_t operator() (const std::set<T> & s) const {

std::hash<T> single_hash;

std::size_t combined_hash_value = 0;

for (const T & obj : s) {

unsigned long single = single_hash(obj);

// (s1*p) + (s2*p) + ... == (s1+s2+...)*p

// is bijective to s1+s2+..., and so will not resist collision

better than s1+s2+...

// however,

// (s1*p) ^ (s2*p) ^ ... != (s1^s2^...)*p

// this can be more collision resistant than s1^s2^....
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// If PRIME is near a power of 2, then

// PRIME=11111111...1x where x is short and has both 0 and 1 bits.

// In that case, single*PRIME = sum_i 2^i*single + x*single.

// Aside from x*single, it behaves much like a reduce built of ^

operations, because

// (exclusing x), everything is simply bit-shifted at all shifts,

// those shifts are summed. This often leads to products of the

form a11111...1111b.

// Each of those results is XORed, so it will behave much like a

reduce built of

// ^ operations.

// So, ideally choose a PRIME not near a power of 2.

combined_hash_value ^= single*PRIME;

}

return combined_hash_value;

}

};

// Some arbitrary random number generator from StackOverflow:

class SimpleRandomGenerator {

private:

unsigned long _random_value;

static unsigned long ROL(unsigned long v, unsigned char shift) {

return ((((v) >> ((sizeof(v) * 8) - (shift))) | ((v) << (shift))));

}

public:

SimpleRandomGenerator(unsigned long seed):

_random_value(seed)

{ }

unsigned long next() {

_random_value = _random_value * 214013L + 2531011L;

_random_value = ROL(_random_value, 16);

return _random_value;

}

};

template <typename T>

class UniversalSetHash {

private:

// Some arbitrary random number generator from StackOverflow:

public:

std::size_t operator() (const std::set<T> & s) const {
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const unsigned long biggest_64_bit_prime = 18446744073709551557ul;

SimpleRandomGenerator srg(0);

std::hash<T> single_hash;

std::size_t combined_hash_value = 0;

for (const T & obj : s) {

unsigned long single = ( single_hash(obj) * srg.next() ) %

biggest_64_bit_prime;

combined_hash_value += single;

}

combined_hash_value += ( s.size() * srg.next() ) %

biggest_64_bit_prime;

return combined_hash_value;

}

};

template <typename SETHASH>

void print_collisions() {

const unsigned long NUMBER_SETS=1<<18;

const unsigned long SET_INSERTIONS=1<<8;

const unsigned long MAX_ELEMENT_PLUS_ONE=1<<8;

srand(0);

SETHASH sh;

std::map<unsigned long, unsigned int> hash_to_object_count;

for (unsigned int i=0; i<NUMBER_SETS; ++i) {

std::set<unsigned int> st;

for (unsigned int j=0; j<SET_INSERTIONS; ++j)

st.insert( rand() % MAX_ELEMENT_PLUS_ONE );

++hash_to_object_count[ sh(st) ];

}

unsigned int items_in_non_unique_buckets = 0;

unsigned long collisions = 0;

for (const auto & pair : hash_to_object_count) {

unsigned int items_in_bin = pair.second;

items_in_non_unique_buckets += (items_in_bin-1);

collisions += items_in_bin*(items_in_bin-1)/2; // items in bin choose

2

}

std::cout << typeid(SETHASH).name() << " items added to non-unique
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buckets:" << items_in_non_unique_buckets << " collisions:" <<

collisions << std::endl;

}

int main() {

print_collisions<XORSetHash<unsigned int> >();

print_collisions<SumSetHash<unsigned int> >();

print_collisions<SumPrimeSetHash<unsigned int> >();

print_collisions<UniversalSetHash<unsigned int> >();

print_collisions<XORPrimeSetHash<unsigned int,

BIG_PRIME_NEAR_POWER_OF_TWO> >();

print_collisions<XORPrimeSetHash<unsigned int,

BIG_PRIME_WITH_GOOD_BINARY_SCATTERING> >();

return 0;

}

Hash Occupied insertions Collisions
XOR 261888 134226345
Sum 256562 11252516

Prime-scaled sum 60047 75174
Universal 0 0

Table 8.1: Collisions from various hash methods, found by running List-
ing 8.6. Occupied insertions refer to the sum of all insertions into a bucket
with an occupied hash, while collisions refer to

∑
i

(
ki
2

)
, where ki is the num-

ber of objects with hash value i.

8.8 Hash caching

As you can see, evaluating our universal hash is more computationally ex-
pensive than simpler approaches (e.g., XORing the element hashes together).
Thus in a case where the XOR approach does not produce many collisions,
it is preferred; however, the cost of re-computing the hash value can be im-
proved by caching it on std::set construction and then simply returning
the hash value when our hash function is called. Obviously, we can’t eas-
ily mess with the std::set code directly, and so a viable approach to this
would be to declare our own HashSet class that contains a std::set ob-
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ject (which will be immutable after construction20). A HashSet<T> object
could be constructed from a std::set<T> object and would cache its hash
value on construction. In practice, caching these kinds of pure functions on
immutable objects21 can substantially improve efficiency.

Questions

1. [Level 2] Write a simple alternative to the std::set<T> class, which
will be immutable and which will cache the hash value on construction.
How do the runtimes in your answer above change by switching to your
alternative class?

2. [Level 3] “Perfect hashing” denotes hashing that provably produces
0 collisions. Assume you have a perfect hash function h defined to
take std::set arguments and returns an unsigned long. What is
the greatest number of objects that you can hash without collisions if
the output of your hash is an unsigned long? You may assume that
sizeof(unsigned long) returns 8.

3. [Level 3] Following from the question above, consider hashing several
sets: You hash all possible sets with nonnegative integers < t (i.e., the
“power-set” of {0, 1, 2, . . . t − 1}) and have no collisions. How many
sets are possible if their contents are all nonnegative integers < t?
Combining this with your answer above, what is the maximum possible
value of t for which we can guarantee perfect hashing using h?

20Immutability is essential when caching the hash value; regardless, immutability im-
portant when using that object in a set (or unordered set) or as the key in a map (or
unordered map). Consider: do you really want to go reorganize that data structure every
time the key changes?!

21i.e., “memoization”, and no, I amb nod tybing “memorization” wid food in my moud



Chapter 9

Cache and Transposition

9.1 SRAM and DRAM

Computer store information in digital circuitry using voltage: high voltage
can indicate a 1 state and low voltage can indicate a 0 state1. In the circuit
construction, there are multiple options to keep a bit at a stable value.

SRAM (“static RAM”) is built using inverters. Basically, a transistor
is an analog faucet where you can apply a signal to tell how much to open
the pipe, and electricity will either flow through or will be stopped up and
accumulate. A transistor can be used to make a circuit where a low-voltage
signal to the control results in a low-voltage output and where a high-voltage
control signal results in a high-voltage output (by using the output to measure
what flows through). But alternatively, we can use a transistor to build
an inverter: a high-voltage input will allow electricity to flow through the
transistor, but it will drain electricity from the source (i.e., the wire where
the electricity is coming from). An inverter turns a 0 (a low-voltage signal)
into a 1 (a high-voltage signal) or turns a 1 into a 0. If we chain two inverters
together in a loop, then consider what happens: A low-voltage input is turned
into a high-voltage output by the first inverter, and that is sent as input into
the second inverter and turned into a low-voltage output, which is then sent
back into the first inverter. In this way, it is self-reinforcing: a low-voltage
input to the first inverter will loop through the circuit and become lower and
lower. Likewise, a high-voltage input to the first inverter will loop through

1There are also reverse schemes; this is related to whether a design is “active high” or
“active low”.
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the circuit and become higher and higher. Thus an analog circuit becomes
digital, and thus we have a the start of a 1-bit memory cell.

A downside of that inverter design is that electricity is always flowing
through the wires, which is very inefficient. We can improve this using a
CMOS2 design. We can control each inverter using two different transistors:
One transistor may allow electricity to flow into the output, and the other
transistor may allow electricity to drain from the output. In this manner,
we can turn the first control on and the second control off, which will allow
electricity to flow into the output and turn off draining from the output,
resulting in a very high-voltage output. Likewise, if we turn the first control
off and the second control on, then no electricity is allowed to flow into the
output and also electrical charge will be drained from the output (making
a very low-voltage output). Thus each inverter costs 2 transistors, and thus
1-bit of SRAM memory costs 2 inverters or 4 transistors. We will also need
1 or 2 transistors to access 1 bit of SRAM: these transistors decide whether
we are connected to the output or not, so that we can connect to only one
particular bit of SRAM.

SRAM is called static because its state doesn’t change unless we manually
force it to do so (e.g., when we set a single bit of RAM); however, this required
4 transistors. On the other hand, we could implement 1 bit of RAM using
a capacitor3: the capacitor stores the voltage, and then later we can read
its voltage back; however, capacitors have some limitations: First, they will
slowly leak their voltage, and so they will need to be periodically refreshed.
Second, when we read from the capacitor, we will actually modify its state by
lowering its charge. Thus, when we read from the capacitor, we will need to
refresh it as well. We will also need to use a transistor to guard the capacitor
so that it is not constantly leaking its charge into the connected wires. The
more analog, constantly changing nature of the charge in the capacitor (as
opposed to looped inverters) makes it more “dynamic”, and thus a 1-bit
RAM cell of this type is called DRAM (“dynamic RAM”).

SRAM is used sparingly because it requires more transistors to imple-
ment. But SRAM is also fast: the feedback of the inverters in SRAM means
that they quickly reach either a 0 or a 1, and so we can reliably modify or read

2Complementary metal-oxide semiconductor
3The thing that makes that really satisfying high-pitched sound when your camera

flash is charging (or when Iron Man’s repulsors are charging)



9.1. SRAM AND DRAM 153

SRAM very quickly. DRAM, on the other hand, is cheaper4 and denser5, but
it is slower to read from7 and requires periodic refreshing. Because of these
pros and cons, both types of RAM are useful, but in a complementary way:

SRAM is used on the processor for things like registers. It is fast, but
expensive, and so we have do not have much. Also, if you are tempted to
build the entire computer using SRAM, consider physical space: even if we
had the money, it would make the circuit so much larger that it would take
more time for the signals to propagate, and thus limit our clock speed8.
Meanwhile, DRAM is used for the bulk of main memory (we generally just
call it “RAM”)9. Because writing to or reading from a single cell of DRAM is
not as fast because we are charging or discharging a capacitor10 and because
it is not physically located on the chip11.

Clearly a program that only uses 1 int variable (which fits in a single
register on the chip) can be very fast, because it can be optimized by the
compiler to use only registers using the on-chip SRAM. Likewise, a program
that uses lots of memory will inevitably need to use RAM (i.e., DRAM) and
will be slower by comparison. The question is this: is there any sort of middle
ground?12

There is indeed a middle ground: cache.

4Fewer transistors = less $ilicon
5Less silicon = more memory in a small space6
6Not using a larger space means we can still use a high clock speed and it will have

time to propagate through the circuit fully.
7Capacitors charge and discharge in a decaying exponential, and so writing and reading

from DRAM takes time.
8i.e., “What is the deal with the black box– if the black box is the only part that

survives a crash, then why don’t they just make the whole plane out of the black box?”
9There is an old story about a German engineer after World War II bemoaning Ger-

many’s loss despite their engineering prowess of that era. “One of our tanks was worth
four of theirs!” When asked what happened, the man sighed and replied, “They always
had five. . . ” Some battles are won with mass production; DRAM is proof of that.

10Citation: Iron Man 2 when I– I mean Iron Man was fighting that guy with electric
whips at the Grand Prix. I– that is, Iron Man kept getting hit while waiting for the
capacitors to charge.

11Even at the speed of light, larger distances make things slower. If we run out of RAM,
we can use disk, which is further and slower still.

12Not that I’m Iron Man– I’m asking for a friend.13
13But not to say that I’m not Iron Man either. Or Banksy. You know what, Mr.

Nakamoto was my father, please call me Satoshi. . .
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9.2 Memory hierarchy & cache

Unlike registers, we do not interface with the cache manually; rather than
explicitly saying “I want to load the contents of address 0xF97A3450 into
register R1”14 as we would in assembly code, we interface with the cache by
simply reading from or writing to RAM. Fetching the value from an address
from RAM will fetch not only that value, but values in the neighboring block
of addresses. Thus, dereferencing address 0xF97A3450 may also fetch ad-
dresses 0xF97A3449, 0xF97A3451, etc. Where do we put these other fetched
values that we did not explicitly request? In an array known as the “cache”.

Cache can be made of SRAM, but placed physically further away form
the heart of the CPU than registers are. Thus, reading and writing from
registers is still significantly faster. But if our assembly code had asked for
the contents of address 0xF97A3450 to be loaded into register R1 (which went
to RAM for the request), and then the next line of assembly code asks for
the contents of address 0xF97A3451 to be loaded into register R2, then rather
than go all the way to RAM, that second load may be found in the cache.
Reading from and writing to the cache is significantly faster than reading
from and writing to RAM.

Because the cache is automatically updated as we read from and write to
RAM, the pattern with which we access data is very important. Reading from
address 0x00000000 then address 0x00000001 then address 0x00000002, etc.
will need to go to RAM for the first fetch (this is called a “cache miss”,
because it will check the cache before going to RAM and find that the address
is, unfortunately, not currently in the cache), followed by several operations
where the addresses are in the cache, and thus the computer will not go out
to RAM (these are known as “cache hits”). While cache misses need to go
out to RAM, cache hits do not, and so they can be significantly faster. Note
that the choice of what register to use is determined by the programmer
while coding in assembly code and by the compiler during compilation in
C/C++ code, but that all cache is managed at runtime on the circuit and has
nothing to do with the compiler.

Thus far, we have discussed “the” cache as if it is a unique entity; however,
most modern high-performance CPUs have multiple hierarchical levels of
cache: Registers are the fastest and most scarcely available, and they must
be invoked explicitly. Caches are automatically used when we request data

14BEEP BOOP. DID I HEAR A PLEASE?
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from RAM. Of these, the L1 cache is the fastest and smallest, L2 is larger
but slower, L3 is larger still and slower still, and so on. These caches are
searched hierarchically as you would expect: If request data from RAM, the
computer will check the L1 cache first. If it is found, it will return it to
us, but if it is not found, it will try the L2 cache, and so on until it either
finds the address in a cache or goes out to RAM. Each access of a particular
address also caches that address. For example, if an address was not found
in the L1 cache, and so the computer checks the L2 cache and finds it, then
the address and its data will automatically be imported into the L1 cache.
Likewise, if the computer does need to go all the way out to RAM to access
an address, then in doing so it will populate nearby addresses into the L3
cache, a smaller block of those addresses into the L2 cache, and a still smaller
block of those addresses into the L1 cache. Each of these blocks is known
as a “cache line”, and each cache will have cache lines of different size, with
smaller caches like the L1 cache using smaller cache lines. This is illustrated
in Figure 9.1.15

The differences in costs for memory accesses from different places in the
hierarchy are quite stark (Table 9.1). It is also worth noting that many
modern computers have two distinct L1 caches: L1d is used for data, while
L1i is used for the instructions in our program (in languages like C++ we don’t
often think of it this way, but source code is really just a type of data, an
array of bytes like any other array). Using a dedicated cache for code ensures
that it is less likely to compete for cache space with data that we load. Thus
we see that ceteris paribus16, smaller code is more efficient. This is one reason
why optimizations like loop unrolling (which will be discussed in Chapter 10)
are not always productive when taken to their logical conclusion17.

9.3 Circuit implementations of caches

Caches work by partitioning the address into several bits. An address will
be partitioned into tag bits, cache set bits, and offset bits. In the case of

15Note that in this chapter we focus on the inclusive cache model: when an address is
cached in L1, then it should also be cached in L2 and L3, etc. This uses memory less
efficiently by storing multiple copies, but simplifies the circuitry.

16Latin: “all other things being equal”
17i.e., when applied ad extremum18

18i.e., ad nauseam, i.e., ad– you get the point.
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L1 cache line size

L2 cache line size

Single read (L1 & L2 miss)
L2 line cached from RAM

L1 line cached from L2

Single read (L1 hit)

Single read (L1 miss, L2 hit)
L1 line cached from L2

Figure 9.1: Illustration of cache access. Data in RAM are drawn, with white
blocks indicating uncached memory, light blue background indicating a cache
line in L1, and a purple background indicating a cache line that is cached in
L2. The top row shows no data cached. In the second row, a single read is
performed. This address (colored red) indicates an L1 cache miss followed
by an L2 cache miss, meaning the data must be fetched from RAM, which
is slow. Following the cache misses, the purple cache line being cached into
L2 and the smaller light blue cache line being cached into L1. In the third
row, another read is performed. Reading this address (colored green) results
in an L1 cache hit, resulting in a fast load time. In the fourth row, another
read is performed. This read (colored yellow) results in an L1 cache miss,
but an L2 cache hit, and will result in a moderate load time.
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Name Cache hit latency Cache size
L1 4 cycles 32KB
L2 10 cycles 256KB
L3 40 cycles 8MB

RAM 120 cycles ≈ 30ns 16GB

Table 9.1: Approximate latencies on Xeon 5500 series
CPU from https://stackoverflow.com/questions/10274355/

cycles-cost-for-l1-cache-hit-vs-register-on-x86#10274402.

a cache hit, offset bits are used to decide which bytes in the cache line are
those we wanted to load. In the third line of Figure 9.1, a read triggers an
L1 cache hit. Because we only want to read one illustrated square of memory
and each cache line of the L1 cache contains 4 such squares, we know that
we need 2 bits to index them. In general the cache line size is 2offset where
offset is the number of bits of the address used as offset bits (they will be
the least-significant bits). The set bits (the next most significant) are used
as the bits to grab a particular cache line from the cache.

For example, if such a cache holds 256KB and has cache lines of size
256B, then it holds 1024 of these lines. 256B cache lines will need 8 offset
bits to access and storing 1024 cache lines means that we would use 10 set
bits. From this it is natural to question why we need the tag bits. The tag
bits comprise the remainder of the address, and are used to verify that the
address in the cache is indeed the correct address (and not simply an address
with an identical suffix). The cache stores the current tags in an array whose
size is the number of cache lines. Thus, when we query the cache for an
address (the address will be partitioned into the tag bits, the cache set bits,
and the offset bits), the cache set bits will be used as the index to retrieve
a particular cache line. The data for that cache line will be retrieved in one
array in the circuitry, while the tag will be retrieved from another array of
the circuitry. After the tag is retrieved from the cache, the desired tag from
our address is compared to it, and if they match we have a cache hit (if they
don’t match we have a cache miss). We do not necessarily need to send in
the offset bits; instead, we retrieve the full cache line (which is itself an array
of data), and then look in the correct index in that cache line using the offset
bits.

The above scheme describes a simple and effective type of cache: the
direct-mapped cache. But there is a problem with this design, which is clear

https://stackoverflow.com/questions/10274355/cycles-cost-for-l1-cache-hit-vs-register-on-x86#10274402
https://stackoverflow.com/questions/10274355/cycles-cost-for-l1-cache-hit-vs-register-on-x86#10274402


158 CHAPTER 9. CACHE AND TRANSPOSITION

when we access evenly spaced addresses that are too far apart to fit in the
same cache line. These addresses can result in many different addresses that
produce identical set bits, which mean they will fight over the same cache
line. This can induce behavior where each cache miss is not followed by
many subsequent cache hits; instead, we may have several cache misses in
sequence, which is very bad for performance.

Another cache scheme is the fully associative cache. In this case, we don’t
use any cache set bits: instead, we divide the address into the tag (using the
most-significant bits) and the offset (using the least-significant bits). In this
case, we can simply compare all currently cached tags in parallel, and if
one matches, we return the data in the same index (e.g., if the third tag
in the cache matches, we return the data from the third cache line). This
design has the advantage that it is essentially impossible to trick by spacing
our addresses in a particular manner. But even though we can perform all
of these tag comparisons in parallel, it requires many comparators, which
means we need a lot of circuitry. Thus, fully associative caches may not be
efficient designs for building large caches.

A happy medium is the set-associative cache. In a set associative cache,
for each string of set bits, we retrieve not one but but a few tags. These tags
correspond to a few cache lines. Thus for a particular string of set bits, we
don’t retrieve a particular cache line, but instead retrieve a small collection
of cache lines and their corresponding tags. These tags are then compared in
parallel as one would do with a fully-associative cache. Since there are only
a few tags to compare, the circuitry is practical to build (whereas it may not
be for a fully associative cache).

Set-associative caches are tolerant when we load multiple addresses that
have the same set bits. Where direct-mapped caches would need to replace
the data any time two addresses contain the same string of cache set bits, an
8-way set-associative cache would permit simultaneously storing 8 distinct
cache lines, each sharing identical strings of cache set bits and distinct tag
bits (meaning they come from distinct addresses).

Caches also use a “dirty” bit (also denoted using its opposite, which is
called a “valid” bit), which is used to determine whether or not the cache
line has actually been populated with current data. Importantly, when our
program writes to RAM and an L1 cache hit occurs, then in the inclusive
cache model discussed here, the data must also be in the L2 cache19. In this

19Even though we do not necessarily need to check because it would be slow
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case, the chip designers have two options: they can either write through to
the L2, L3, . . . caches so that all caches are up to date or they can wait until
the data is evicted from the L1 cache and only write the updated data to
the L2 cache when that happens. The first case is called a “write-through”
cache20, while the second option is a “write-back” cache. There is a trade-
off where write-through caches require less sophisticated circuitry, but where
write-back caches are more performant when writing to memory. Very fine
tuning your program will require investigating the details of the types of
cache in your CPU.

9.4 Optimized access patterns

As is clear in Figure 9.1, we can achieve high performance by accessing
memory in a contiguous, sequential fashion. This means that the cost of
each cache miss (for any caches, e.g., L1, L2, . . . ) is amortized out because
it must be followed by several cache hits, and so the average time will be quite
fast. For this reason, arrays, especially those accessed in a sequential manner,
are generally the best for cache performance. This means that array-based
algorithms will generally have a far superior runtime constant compared to
non-contiguous data structures.21

If a program first iterates through all even indices in an array and then
subsequently iterates through all odd indices23, then when the array is very
long, the code will be less efficient than iterating over all indices sequentially
(if possible). A large performance difference only occurs when the array is
long because we know that by the end of iterating through all even indices,
the cache should be completely full24. Thus, the iteration through the odd
indices will likely not benefit at all from any caching that occurred when
iterating through the odd indices. Only the end of the array will be cache
when we begin iterating through the odd indices, because the beginning of
the array will be evicted from the cache if the entire array cannot be stored.

20Surprising no one
21Do you remember how in Chapter 6, we said that vectors were advantageous over

linked lists because they store memory in contiguous blocks?22
22Pepperidge Farm remembers.
23We will see this precise behavior in the case of the FFT implementation in Chapter

14.
24No cache schematic can save us if we’ve already packed 1024KB of data into a cache

that holds 1024KB of data.



160 CHAPTER 9. CACHE AND TRANSPOSITION

Row A

Row B

Row C

Row D

Row A Row B Row C Row D

Figure 9.2: Row-order storage of a matrix. When the matrix (top) is allo-
cated as a single block (i.e., embedded in a 1D array, bottom), the rows form
contiguous blocks with the second row immediately following the first row
and so on. In this scheme, rows are stored in contiguous blocks but columns
are not.

9.5 Cache-optimized code

Even when we are not performing very fine tuning to customize a piece of
code for a particular cache, we can change our access patterns in order to
achieve large speedups.

Consider a program where we sum the contents of a matrix. We will do
this using two nested for loops, one iterating over all rows and one iterating
over all columns. Listing 9.1 iterates over the matrix in column-major order
(i.e., with the column index in the outer loop). It runs in 0.08390s.

Let’s consider the access pattern in Listing 9.1. First consider how a
contiguous matrix is stored in memory in C (Figure 9.2).25

Figure 9.3 shows the effect of iterating over a matrix in column-major or-
der. If the matrix has many columns, entire rows will not fit in a single cache
line. Accessing the first element in each row (i.e., visiting the first column)
will result in a cache miss (red), but will cache the neighboring cache block
(blue); however, these cached values will come from neighboring columns
rather than the same column (assuming the matrix is wider than one cache

25Note that in languages like Fortran, the matrices are stored in transposed order,
which will be different than shown here.
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...

Figure 9.3: Traversing the matrix in column-major order. A single L1 cache
and no L2 or L3 cache (i.e., no hierarchical caching) is assumed. The panels
show the results after loading the next four elements. Cache misses are
labeled in red and currently cached values that have not yet been read are
labeled in blue. For a large matrix, column-major traversal does not benefit
from the cache and will produce cache misses at every element.

line). If the matrix is large, by the time the next column is being processed,
the neighboring columns will already have been evicted from the cache, and
so essentially all reads will result in cache misses.26 This is reminiscent of
“thrashing” when a computer runs out of RAM and two programs keep tak-
ing data from the disk swap and relegating the other program’s data to the
disk swap.27

Listing 9.2 iterates over the same matrix in row-major order (i.e., with the
column index in the inner loop). Simply swapping the order of the two for

loops produces code with algorithmically indistinguishable runtime, but one
that is practically superior (0.02013s, a > 4× speedup over the column-major
version).28

Listing 9.1: Summing a matrix in column-major order.

#include "../Clock.hpp"

#include <iostream>

int main() {

unsigned long R = 1<<12;

unsigned long C = 1<<12;

double * matrix = new double[R*C];

for (unsigned long i=0; i<R*C; ++i)

26No no no nope please no.jpg
27If no computer scientists have yet started a metal band called “Cache Thrash”, we

should totally do it! No, you go ahead first. . . I’ll be right behind you. . . soon. . . maybe. . .
28Two words to describe cache-optimized code: really, really, really fast.
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matrix[i] = i;

Clock c;

double result = 0.0;

for (unsigned long c=0; c<C; ++c)

for (unsigned long r=0; r<R; ++r)

result += matrix[r*C+c];

c.ptock();

std::cout << "Sum was " << result << std::endl;

return 0;

}

Listing 9.2: Summing a matrix in row-major order.

#include "../Clock.hpp"

#include <iostream>

int main() {

unsigned long R = 1<<12;

unsigned long C = 1<<12;

double * matrix = new double[R*C];

for (unsigned long i=0; i<R*C; ++i)

matrix[i] = i;

Clock c;

double result = 0.0;

for (unsigned long r=0; r<R; ++r)

for (unsigned long c=0; c<C; ++c)

result += matrix[r*C+c];

c.ptock();

std::cout << "Sum was " << result << std::endl;

return 0;

}

9.6 Transposition

Since we would definitely prefer to traverse a matrix in row-major order, it
is difficult to conceive of a good strategy in the case of matrix transposition.
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...

Figure 9.4: Traversing the matrix in row-major order. A single L1 cache and
no L2 or L3 cache (i.e., no hierarchical caching) is assumed. The panels show
the results after loading the next four elements. Cache misses are labeled in
red, and cache hits are green. By traversing in row-major order, each cache
miss is followed by a few cache hits.

When transposing a matrix29, we do desti,j ← sourcej,i. If we iterate through
the destination matrix in row-major order (which is good for cache perfor-
mance), we will necessarily process the source matrix in column-major order
(poor for cache performance). Likewise, if we iterate through the source
matrix in row-major order (which is good for cache performance), we will
necessarily process the destination matrix in column-major order (poor for
cache performance). In this case, both approaches will be similar, and it
may feel like there is no good solution. Listing 9.3 demonstrates naive ma-
trix transposition, and runs in 0.03955s.

29Here we will focus on out-of-place transposition from a source matrix to a separate
destination matrix; in-place transposition is easy when the matrix is square, but becomes
mathematically difficult otherwise, because items cannot always simply be swapped. For
example, consider a 5 × 4 matrix stored in a contiguous array of length 30. Index (3, 2)
corresponds to the flat index 3× 4 + 2 = 14 in the array. We will want to write this into
index (2, 3) in the transposed array, which in the transposed array (which has shape 5×4)
would be at flat index 2× 5 + 3 = 13. Index 13 in the current array corresponds to index
(4, 1), because i × 4 + j = 13, and so i = 13

4 = 3 and j = 13 mod 5 = 1 in the current
array. If we copy the value from flat index 14 into its new home in index 13, we will need
to save the value from flat index 13 so that it is not overwritten. If we save many of these,
we need a buffer (and so the method is not truly in-place), and if not, we need to first
copy the data from flat index 13 to its new home. This continues until the indices create a
full loop. While this requires number theory for non-square matrices, for square matrices
in-place transposition is simplified because we know that we can simply swap the contents
of indices (i, j) and (j, i).
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Listing 9.3: Naive matrix transposition.

#include "../Clock.hpp"

#include <iostream>

__attribute__ ((noinline))

void transpose(double*__restrict dest, double*__restrict source, const

unsigned long r, const unsigned long c) {

for (unsigned long i=0; i<r; ++i)

for (unsigned long j=0; j<c; ++j)

// dest[j,i] = source[i,j];

// Note: this code can be rewritten to avoid using the *

// operator, and using += instead.

dest[j*r + i] = source[i*c + j];

}

int main() {

unsigned long R = 1<<10;

unsigned long C = 1<<12;

double * matrix = new double[R*C];

for (unsigned long i=0; i<R*C; ++i)

matrix[i] = i;

Clock c;

double * result = new double[R*C];

transpose(result, matrix, R, C);

c.ptock();

return 0;

}

9.7 Block-wise matrix transposition

The good solution is to traverse both matrices in blocks. Figure 9.5 shows
how a matrix can be cached effectively by reading blocks that are no wider
than the size of a cache line. In this manner, whether we iterate by rows or
columns, we achieve cache hits within this square block.30 For this reason,
both the source and destination matrices in the transposition will achieve

30For simplicity, we will assume that the cache is “tall”, i.e., that the number of cache
lines is larger than the size of a cache line.
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...

......

Figure 9.5: Traversing the matrix in blocks. A single L1 cache and no L2
or L3 cache (i.e., no hierarchical caching) is assumed. The panels show the
results after loading the next 16 elements. Cache misses are labeled in red
and cache hits in green. The same pattern is produced regardless of whether
the block is traversed by rows or by columns; thus, this method can be
used effectively for transposition, because blocks of the source matrix can be
traversed by row and blocks of the destination matrix can be traversed by
column (or vice versa).

cache hits. Listing 9.4 runs in 0.01895s (a > 2× speedup over the naive
approach).

Listing 9.4: Block matrix transposition. Better performance is achieved via
a more cache-friendly access pattern.

#include "../Clock.hpp"

#include <iostream>

#include <assert.h>

const unsigned int BLOCK_WIDTH = 4;

__attribute__ ((noinline))

void block_transpose(double*__restrict dest, const double*__restrict

source, const unsigned long r, const unsigned long c) {

assert(r % BLOCK_WIDTH == 0 && c % BLOCK_WIDTH == 0);

for (unsigned long i=0; i<r/BLOCK_WIDTH; ++i) {

for (unsigned long j=0; j<c/BLOCK_WIDTH; ++j) {

// Transpose an BLOCK_WIDTH x BLOCK_WIDTH block:

for (unsigned int a=0; a<BLOCK_WIDTH; ++a) {

for (unsigned int b=0; b<BLOCK_WIDTH; ++b) {

// dest[j+b,i+a] = source[i+a,j+b];
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dest[(j*BLOCK_WIDTH+b)*r + i*BLOCK_WIDTH+a] =

source[(i*BLOCK_WIDTH+a)*c + j*BLOCK_WIDTH+b];

}

}

}

}

}

int main() {

unsigned long R = 1<<10;

unsigned long C = 1<<12;

double * matrix = new double[R*C];

for (unsigned long i=0; i<R*C; ++i)

matrix[i] = i;

Clock c;

double * result = new double[R*C];

block_transpose(result, matrix, R, C);

c.ptock();

return 0;

}

9.8 Cache-oblivious matrix transposition

What is the best block size to use?31 The largest one that will fit our cache
is a good choice. We could find this by investigating our particular hardware
schematics, but we could also find this empirically by just trying different
block sizes and using the one that works best. However, both of these op-
tions may be unavailable if we are writing code for an unknown computer32.
Likewise, our block matrix transposition can only be optimized for one cache
size, but not for the hierarchical L1, L2, . . . cache setup in nearly all modern
high-performance computers.

The solution here is “cache-oblivious”33 matrix transposition. In cache-

31“I’ll tell you. . . I don’t know.”
32e.g., a computer owned by a customer or even on a computer that has not yet been

invented
33This means code that isn’t tuned for a particular collection of cache sizes and their

setup, and it sounds bad, but in this case, it’s actually a good thing: if we have a high-
performance cache-oblivious method, then it should perform well on any computer.
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Figure 9.6: Order of source elements visited by cache-oblivious matrix trans-
position. By recursing as described in Figure 9.7, the top-left block is visited
first, the top-right block second, the bottom-left block third, and the bottom
right block fourth. This pattern continues in each visited block, so the first
block is divided into sub-blocks 1.1, 1.2, 1.3, and 1.4. The full matrix will
be visited in the order 1.1, 1.2, 1.3, 1.4, 2.1, 2.2, 2.3, 2.4, 3.1, 3.2, 3.3, 3.4,
4.1, 4.2, 4.3, 4.4. In this manner, square blocks of various magnitudes are
processed, achieving good performance regardless of the respective L1, L2,
L3 cache sizes on a particular CPU (i.e., a cache-oblivious method). Each
sub-block will be visited in a “Z” pattern.

oblivious matrix transposition, we simply visit the matrix in blocks, and then
subdivide each of those blocks into sub-blocks. This ensures that even if the
initial block was too large to fit in the cache, it will be divided into sub-blocks
that can fit, and so we are guaranteed that the first block that fits in a cache
will make use of no less than half of the cache line. The process by which we
iteratively subdivide into smaller blocks is shown in Figure 9.6.

This can be written in a straightforward manner by simply recursively
dividing the larger remaining axis of the matrix (if the matrix is tall, cutting
it into two matrices stacked vertically and if the matrix is wide, cutting it
into two matrices stacked horizontally). This is illustrated in Figure 9.7.

Listing 9.5 demonstrates cache-oblivious matrix transposition. When
benchmarked34, this code runs in 0.009606s, even faster than the block-wise
approach in spite of the recursive implementation used here. A well-tuned35

block transposition may be faster, but this is quite good. In theory the cost
of the recursions will be amortized out if we choose a non-trivial block size
for termination (thus ensuring the cost of the recursions is dwarfed by the
cost of doing actual work); however, in practice, a non-recursive version may
be much more optimized by the compiler, and so would still be beneficial.

34“Now we find out if that code is worth the [recursive] price we paid. . . ”
35By adjusting the block size
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A B

AT

BT

Figure 9.7: Cache-oblivious out-of-place matrix transposition. The longer
axis (either rows or columns) of the source matrix is divided in half. Then,
the submatrices A and B in the source matrix will produce AT and BT in
the destination matrix. The process of converting A to AT and of converting
B to BT are themselves transpositions and would result in recursion of the
same method.
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This could be implemented with a stack just as a non-recursive quicksort
implementation is implemented.

Listing 9.5: Recursive cache-oblivious matrix transposition.

#include "../Clock.hpp"

#include <iostream>

// Chosen to be large enough that the cost of the work on a BLOCK_SIZE

// x BLOCK_SIZE matrix transposition amortizes out the cost of the

// recursions needed to reach it (but small enough that the block

// matrix fits comfortably in the cache). Note that this is not as

// challenging as choosing the size for a block matrix transpose,

// because this BLOCK_SIZE parameter needs only be large enough to

// amortize out the recursions.

constexpr unsigned int BLOCK_SIZE = 4;

// Buffered (out of place):

static void buffered_helper(double*__restrict const dest, const

double*__restrict const source, const unsigned long R, const unsigned

long C, const unsigned long r_start, const unsigned long r_end, const

unsigned long c_start, const unsigned long c_end) {

unsigned long r_span = r_end-r_start;

unsigned long c_span = c_end-c_start;

if ( r_span <= BLOCK_SIZE && c_span <= BLOCK_SIZE ) {

// Small matrix fits in cache, proceed in naive manner.

for (unsigned long r=r_start; r<r_end; ++r)

for (unsigned long c=c_start; c<c_end; ++c)

// dest[c,r] = source[r,c];

dest[c*R + r] = source[r*C + c];

}

else {

if (r_span > c_span) {

buffered_helper(dest, source, R, C, r_start,r_start+r_span/2,

c_start,c_end);

buffered_helper(dest, source, R, C, r_start+r_span/2,r_end,

c_start,c_end);

}

else {

buffered_helper(dest, source, R, C, r_start,r_end,

c_start,c_start+c_span/2);

buffered_helper(dest, source, R, C, r_start,r_end,

c_start+c_span/2,c_end);

}

}

}
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__attribute__ ((noinline))

void recursive_transpose(double*__restrict dest, double*__restrict

source, const unsigned long r, const unsigned long c) {

buffered_helper(dest, source, r, c, 0, r, 0, c);

}

int main() {

unsigned long R = 1<<10;

unsigned long C = 1<<12;

double * matrix = new double[R*C];

for (unsigned long i=0; i<R*C; ++i)

matrix[i] = i;

Clock c;

double * result = new double[C*R];

recursive_transpose(result, matrix, R, C);

c.ptock();

return 0;

}

Cache performance is one of the crucial features that separates algorith-
mic performance from real performance of code in the wild, and because
of this, programmers who have some intuition about how to exploit cache
may be much more effective. Significant linear speedups from cache perfor-
mance can often tip the scales when choosing between two algorithms. For
example, an O(n) algorithm that stores data in discontiguous chunks and
accesses memory in a non-sequential manner may well be much slower than
an O(n log(n)) algorithm with good characteristics. Of course, if n were very
large, the algorithmic complexity would overwhelm the constant speedup,
but then it may not be possible to store such large data in RAM (and so
we may go to disk, where RAM now feels like a cache). Algorithms that
are optimized for large amounts of disk access are known as “out-of-core”
algorithms, and are important for big data36.

36I.e., they’ve always been important, like when “big data” meant 1KB. Also, they will
likely continue to be important, as our hunger for computational resources continues to
grow.
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9.9 Multicore considerations

Multicore processors often have dedicated L1 caches for each core, but when
it comes to larger caches like L3, they may be shared. This can lead to
challenges where the latest version of a variable is modified by one core,
but has not yet been propagated to another core (because the caches are no
longer strictly hierarchical). For reasons like this, multithreaded code is often
more challenging to optimize for cache performance when applied to large
data (small data can fit everything in the L1 caches, and so may experience
fewer struggles of this nature). Good chip design is essential to producing
processors that do not simply sound impressive, but which are truly fast.

Questions

1. [Level 0] Linked lists in high-performance code make me feel (circle
one):

�
�

2. [Level 1] A program currently allocates two blocks of mem-
ory, one for the data and one for a buffer (as performed by
the merge sort in Chapter 3 Question 2). These are allo-
cated unsigned long*source = new unsigned long[n]; unsigned

long*buffer = new unsigned long[n];. Where in memory will
these allocations come from? Are they guaranteed to be adjacent?
How large would they be together if they were adjacent? What could
be done to guarantee that they will be adjacent? You may assume that
both the source and buffer values will only be used in conjunction (i.e.,
we never want one without the other).

3. [Level 1] Draw a “connect-the-dots” access pattern of calling our
cache-oblivious matrix transposition on a 2 × 2 matrix. Do this by
drawing the square matrix, numbering the indices by the order with
which they are accessed, and then connect the ascending numbers with-
out lifting your pen (use a base case block width of 1, so that we never
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switch to the naive approach). Repeat on a 4 × 4 matrix. Repeat on
an 8× 8 matrix.

4. [Level 2] Plot runtimes per element for transposition vs. total size
of RAM used for a naive out-of-place matrix transition (out-of-place
transposition of an n × n matrix of double types uses 2n2 double

values, each using 8 bytes). This will report the total elapsed time
divided by n2. On the same figure, also plot the runtime per element
of out-of-place cache-oblivious matrix transposition. Now annotate the
sizes of the L1, L2, and L3 caches on your system. Can you explain
where the runtime per element increases?

5. [Level 3] Write a function to multiply 2 matrices using the standard
O(n3) method: C = A ·B means that Ci,j ←

∑
k Ai,k ·Bk,j. Benchmark

it on the product of two 210×210 matrices. Now write a second version
that iterates over both matrices in a cache-friendly manner (i.e., try
to avoid iterating over columns in a matrix). Does transposition help?
What sort of speedup do you see?



Chapter 10

Compiler Optimizations

10.1 The compiler: a hunting dog and a

friend

Thus far, we have casually discussed the compiler through anthropomor-
phisms: “The compiler is smart enough to figure out [something]”1. Even
though a compiler will not possess the intelligence to replace a capable pro-
grammer2, it can be an indespensible ally, a trusted friend who removes some
of the more tedious3 aspects of programming so that we can think at the high
level rather than at the low level. In this respect, the compiler resembles a
trusty hunting dog, a companion who complements our intelligence with a
certain brute force and speed. We track our quarry using our extensive hu-
man intelligence, but once it is within sight, we release our hound, who is
much better able to close the final meters on foot.

1It’s fun watching this cargo cult behavior develop in seasoned programmers:
“Hmm. . . the compiler wants us to avoid pointers here,” or “Hmm. . . the compiler isn’t
going to like it if we divide there,” or even “Can’t you see?! I want to marry you. . . It’s
the compiler that doesn’t want me to!”

2If the compiler could adequately replace skill in programming, then why would the
things in this book actually produce faster code?

3Of course, there is not really anything tedious about any task if you zoom in far
enough (as Richard Feynman put it, “Nearly everything is really interesting if you go into
it deeply enough.”); however, some tasks may not be of utmost interest at any particular
moment: register allocation is certainly an intriguing problem, but it may not be our first
priority when we are working a task like optimizing a sorting algorithm4.

4Or graduating

173
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In many cases, well-optimized code generated by the compiler may ac-
tually outperform hand-edited assembly code while requiring a fraction of
the development time, being much more human readable, and being easier
to debug. As is the case in the hunting analogy, a human with a compiler
is a far better hunter than either just the human alone or just the computer
alone.5 By better understanding how the compiler works, by understanding
its virtues and its current limitations, we can successfully produce very fast
code.

10.2 How compilers work: front end and

back end

Compilation begins on the front end. The front end is where C++ code is con-
sidered on a high level, where the first type of optimizations can be performed.
Compilers first digest code using a parser6, producing an intermediate data
structure, the “control flow graph” (CFG). The CFG is a type of directed
graph indicating the dependencies of the code. For example, consider the
three C++ statements w = x+y; x = y+w; z-= x;. The first of these state-
ments, w = x+y; needs to finish before the second statement can begin. This
is because it produces two types of dependencies: First, there is a a “read-
after-write” (RAW) dependency because the first statement modifies w and
the second statement relies on the updated value of w. Second, there is a
“write-after-read” (WAR) dependency because the second statment modifies
x, and so the first statement must be run before this modification takes place,
so that it can use the pre-modified value of x7. Dependencies are marked by
directed edges in the CFG for this block of code (Figure 10.1). The CFG
also reveals the fact that the the third statment depnds on the second stat-
ment. Because of this, even when a processor is built to support parallelism
(such as with SIMD, mentioned in Chapter 5), the three statements can-
not be adequately parallelized in their current form, because if they were to

5“The deadliest weapon in the world is a marine and his rifle.”
6Such as lex, the free GNU parser used for writing compilers.
7There is a last kind of dependency: “write-after-write” (WAW) dependencies occur

when two statements both modify the same variable. For the code to function as intended,
the last modification should be used for any subsequent read operations and the first
modification should be used for any previous read operations occurring between the two
modifications.
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w = x+y;

x = y+w;

z -= x;

Figure 10.1: A basic CFG. Dependencies are shown for the block of code
w=x+y; x=y+w; z-=x;.

run simultanously, the dependencies would not be respected. The CFG for
an alternate block of code, a=b+c; b=a+x; c=a+y; t=z-7; a=13;, reveals
the opportunity for parallelism: the first and fourth statements can be run
in parallel. Then, after the first statement is finished, the second and third
statements could be run in parallel. The fifth statement can only be run once
the second and third statements complete (because of a WAR dependency).
Finding a good order in which to run the statements (e.g., an order that
exploits parallelism effectively) is known as “scheduling”, and is a crucial
back-end optimization.

The front-end compiler translates the code into the CFG, transforms it
with front-end optimizations, and then translates the CFG into assembly
code. This is convenient because many processors (e.g., the x86-64 family)
have overlapping assembly languages8, and so compilers can be simplified by
exploiting this modularity.

Back-end optimization occurs on the assembly code itself. In this stage,
the code is optimized on the assembly level and is “assembled” to machine
code. Machine code is a binary data consiting of blocks of data where each
word contains an opcode, and register or immediate arguments. The opcode
tells the chip which operation is being performed: e.g., ADD could be repre-
sented as 1010, which would be a binary tag to activate the add operation
within the ALU9. The other parts of the binary word indicate what should

8Note that they do not share identical instruction sets; therefore chip-specific optimiza-
tions are still highly important. These are mentioned later in this chapter.

9ALU = Arithmetic and logic unit. It’s the hardware that actually performs additions,
multiplications, bitwise and/or operations, etc.
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a = b+c;

b = a+x; c = a+y;

t = z-7;

a = 13;

Figure 10.2: A basic CFG depicting opportunities for parallelism. Dependen-
cies are shown for the block of code a=b+c; b=a+x; c=a+y; t=z-7; a=13;.
The first and fourth statements can be executed in parallel, and then the
second and third statements can be executed in parallel once the first state-
ment completes. Once the second and third statements have both completed,
it is safe to run the fifth statement (modifying a). These opportunities for
parallelization can only be exploited when the hardware is capable.

be added: the word 1010 001 010 011 (spaces added only for emphasis) could
indicate “add R1 = R2 + R3”. Bits in the word could also be set to indi-
cate that the arguments are “immediate”. For example, performing x += 10

could be written by storing the value 10 somewhere in RAM and then load-
ing both that value and x into registers, adding them, and then storing the
result to the address of x; however that is quite verbose and inefficient, and
so. it is preferred to enable CPUs to directly accept small numerical argu-
ments instead of a register number. An immediate ADD could match opcode
101110 and so the word 1011 001 001010 (space added for emphasis) would
indicate: “add R1 = R1 + 10”. In this mode, a chip could use those latter
bits to indicate the value 10, thereby avoiding the need to load the value
10 from RAM before the add can be begun11. Machine code is even more
opaque than assembly code, and so developers use it even more sparingly
than assembly code12; however, it is still useful to understand how it works.
For example, it can help us understand why x += 10 may be faster than
x += 104928 on some particular chip, because the second argument cannot

10Alternatively, an immediate ADD operation could be specified by “flag” bits not in-
cluded in the opcode and arguments

11Consider the nice benefits to cache performance when one uses immediate arguments.
12I have had occassion to directly write machine code only a few times in my life. Why?

Because I was writing a compiler.
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be fit into the immediate arguments and so must be performed as multiple
immediate additions or by loading the argument 104928 from RAM13. Back-
end optimizations are performed at this assembly stage. In this stage, the
compiler tries to find the best way to write the low-level code into machine
code.14

Front-end optimizations are usually more algebraic, such as reordering
loops (described below). Back-end optimizations consider more details about
assembly code and utilizing the hardware as well as possible. There is a
fuzzy line between front-end and back-end optimizations, and a sophisticated
compiler could even alternate between the two.

In the most formal form, compilation is a kind of optimization puzzle
on a particular algebra defined by the programming language: compilation
is the task of producing an equivalent piece of code that will be as fast as
possible. What does the function look like that we’re optimizing? This is
tricky; it is difficult to predict precisely how modifications to code will af-
fect the runtime, because changes will influence the ability of the compiler
to parallelize them, the cache performance, and more. The search space of
all possible pieces of code that would produce the same output is essentially
impossible because even determining which pieces of code will terminate is
undecidable15. For this reason and for practical reasons involving the massive
search space, compilers struggle with performing very large transformations
to provably equivalent pieces of code. Instead, heuristics are used to dis-
tinguish beneficial modifications from harmful modifications. In the simple
cases, this is easy: a transformation that produces the same result in one
fewer additions is good. But a transformation that produces the same result
with one fewer multiplication but two more additions is much more difficult
to evaluate. This is reminiscent of heursitics used in computer chess: “Is it
worth losing a bishop to take out a knight if the resulting board position is

13This precise example is likely not to be a large issue in practice on modern 64-bit
CPUs. But you still may encounter things like when you use large integers on your CPU
or if you use moderately sized values on embedded systems. Or you might encounter
precisely this example if your laptop is so old that whenever you turn on text to speech,
it keeps telling stories about growing up during the Civil War (which it refers to only as
“The Waawah of Nawthahn Aggreshawn”) and making. . . other comments to which some
readers may object.

14[Badge achieved]: Congratulations, you are now an assembly programmer!
15This is Turing’s halting problem: assuming someone supposedly had a method to

decide if a piece of code would terminate, we could then use their method inside our code,
and make it do the opposite of whatever it predicted.
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so-and-so? Hmm. . . ” Cutting-edge profiling compilers are actually able to
iteratively run different transformations of the code and observe how they
get better or worse.16

By learning the techniques available to modern compilers, it is possible to
anticipate where they will succeed in optimizing, and thus lead the compiler
toward fast code.

10.3 Tasks where compilers excel

10.3.1 Basic mathematical equivilences on constants

One of best places where compilers excel is operating on constexpr in-
tegers (whose values are fixed at compile time). For instance, the code
constexpr long x=176; long y=x+8; can be replaced by performing the
operations on constexpr arguments at compile time: long y=184;. By
moving the computations to compile time, the runtime can improve. These
kinds of operations are called “constant propagation” or “constant folding”.

In the same vein, consider the block of code constexpr int x=2; y/=x;,
where we divide an integer y by 2. Division is relatively expensive compared
to addition or bitwise operations (e.g., bitwise and with &, bitwise or with |

and bit shifting with << and >>). We can exploit the fact that division by 2 is
the same as shifting right by 1 bit; because the denominator is a constexpr,
the compiler can observe this at compile time, and our code will be replaced
with the faster line y>>=1;.

Likewise, checking if an integer is divisible by 2 can be called with-
out the use of the modulo operator17: In the naive case we would write
if (y%2 == 0) to test if y is even. The compiler can replace that with
if (y&1 == 0), thus reducing the burden from a modulo operaton to a bit-
wise and operation. When performing modulo operations with a constexpr

right-hand side, the compiler can find this speedup automatically via con-
stant propagation. constexpr int x=2; if (y%x == 0) will be replaced
with the faster if (y&1 == 0).18

16This exemplifies our credo from Chapter 2 about focusing on what we can empirically
measure.

17Recall that modulo can be performed by a division, a multiplication, and a subtraction,
making it even slower than division unless there is a fast single-purpose circuit specifically
for modulo operations on your CPU.

18Already, we run into the difficult question of how explict we should be when optimizing
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Constant propagation can have powerful implications on if statements
and loops: if both x and y are constexpr, then the statement if (x<y) will
be known at compile time, thereby avoiding the loop. Similarly, expressions
like x+0, b &&false, and 1+y+2 can be simplified at compile time.

Passing boolean arguments as templates19 can force the compiler to recog-
nize the constexpr argument and create two versions of the called function:
one when the argument was true and one when the argument was false. In
each of these functions, any if statements about that bool parameter can
be eliminated by simply removing the corresponding block of code inside the
if in the case where the template parameter was false. More sophisticated
versions of these approaches will be discussed in Chapter 12.

10.3.2 Register allocation

A classic problem for compilers is register allocation. That is, when we
perform a series of operations such as ++w; y=w*x; x=y+3; z=w+x+y;, if
our CPU only has 2 registers20, then we cannot dedicate a register to each
of our 4 variables. Register allocation is the task of mapping variables and
temporary values to registers so that we minimize the times that we need to
read from or write to RAM21.

Register allocation is NP-hard, but it is actually one of the areas where
compilers are very reliable. First-generation C compilers were not as good
as their present-day counterparts, and so this is why C contains options to
perform many operations in one line: e.g., the line vec[++index]=c; will

our code. On a constexpr integer N, it is generally better practice to write N/2 rather
than N>>1, because it will be more readable and both will perform the same operations
(i.e., the division will be performed at compile time). On the other hand, in the general
case where N is not constexpr, it’s generally better to write in the most efficient form
to be explicit about the optimizations we’re pursuing. This makes those optimizations
apparent to another human reading our code (e.g., they know that we do not plan to
actually perform the more expensive integer divide operation), and our mothering may
help the compiler not to miss the speedup.

19We generally think of using templates to pass typenames, but we can also pass bool

and integer types. This can be beneficial, because template types must be constexpr,
which will be recognized by the compiler.

20This is too small to be realistic on a modern desktop CPU, and is only used for
illustration.

21We will write and read the variables to RAM, but if we are lucky, we may use the
cache instead; however, this is not something that we perform manually: to us, we are
still reading from and writing to RAM.
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Listing 10.1: A simple recursive factorial. Tail recursion optimizations will
convert this to the more efficient loop-based code.

unsigned long factorial(unsigned i) {

if (i <= 0)

return 1ul;

// Since i>0, using (unsigned int)(i-1) is safely going to decrease:

return i * factorial(i-1);

}

increment index, then perform vec[index]=c;. Expressions like the one
written can help the compiler see that a variable (such as index) should be
kept in a register during the increment operation and then written used to
inex vec before writing index to RAM. C even included a register keyword,
which hinted to the compiler that a highly used variable should be completely
kept in a register for its lifespan if possible.

These ornate expressions today are more anachronistic than useful, and
they often decrease readability of code without actually increasing its per-
formance; however, when a portion of code is taking a substantial percent of
the runtime, then it is still advisable to test expressions like this and then
carefully benchmark to see if there is any change in performance. Generally,
there will not be one: automatic register allocation is usually just as good as
hand-edited assembly code.22

10.3.3 Tail recursion

Another classic optimization is “tail recursion”, in which recursive calls of
certain functions can be replaced with their iterative loop-based forms. For
example, if we considered the recursive factorial function in Listing 10.1, then
this code will be performed recursively as it is written. But with optimiza-
tions enabled, the compiler can observe that the recurrence is always called
last, and so any modifications of global variables it performs cannot influence
the control flow of the calling function. As a result, this recursion can be
replaced by an equivalent non-recursie, loop-based form.

Because recursion necessarily grows the stack, it is generally less cache
optimized. There is also overhead for copying parameter values to the stack

22Or better.
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and reading return values from the stack. Furthermore, loops in the same
scope allow the compiler to see the function as its own autonomous unit;
this modularity can enable the compiler to restructure the loops or to find
reusable code. When recurring expressions are computed in each recursion,
it is more difficult for the compiler to identify them, because they do not
exist in the same scope.

10.3.4 Named return value optimization (NRVO)

When a function returns a local object (such as our first valid game of life
in Chapter 4, which returned a std::vector<std::vector<bool> >), this
will need to be copied. Consider calling std::vector<std::vector<bool>

> board = advance(current board,R,C);. The literal meaning of those
lines is that the advance function will construct a temporary local object
of type std::vector<std::vector<bool> > for the return value, and then
copy it into board using the = operator for std::vector. With named return
value optimization (NRVO), we can count on the compiler to eliminate this
copying step and effectively just opoerate directly on board. Preventing this
copying can improve performance significantly when these objects have data
allocated on the free store (with new or malloc).

10.3.5 Basic loop reordering

In Chapter 9, we summed a matrix by looping over rows and by looping over
columns. In that case, the compiler did not automatically detect that the
cache-unfriendly column-row loops could be rewritten as the more efficient
nested row-column loops; however, sometimes the compiler can notice such
things and reorder the loops accordingly. Swapping the inner and outer loops
in this way is called “loop reordering”, and it can be applied when the loops
do not depend on one another and when the code inside both loops will not
change as the result of reordering. Formalizing this last criteria is tricky, but
special cases like summing are more easy. Generally, where state is updated
and where the result of this iteration may be used in the result of some
subsequent iteration, reordering is not safe.

The reason that the compiler doesn’t automatically reorder our cache-
unfriendly column-row sum from the previous chapter is because when we add
double types, order of operations matters (this is described more thoroughly
below).
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10.3.6 Loop unrolling and peeling

One of the most beneficial speedups in practice is “loop unrolling”. We tend
to think of loops as having no overhead, ignoring the cost of the increment
operation and of the test and backward branch to stay in the loop (instead
of leaving the loop); however, when the loop itself is doing a simple task
such as in the case int tot=0; for (int k=0; k<N; ++k) tot+=x;, then
the cost of the overhead (which consists of an addition and a comparison for
each iteration) becomes similar to or even more than the cost of the actual
work (an addition). For this reason, it can be advantageous to perform a
fraction of the iterations of the loop, but in each iteration, to do multiple
steps: for (int k=0; k<N/2; ++k) { tot+=x; tot+=x;}. Now for each
iteration’s overhead, we do twice the actual work. As a result, this can
produce a large speedup in practice. This can be done manually23, but it can
also be performed by the compile.

There are considerations that need to be taken when unrolling loops.
We must ensure that the optimized code produces identical results, and in
this case it will not when N is not divisible by 2. When N % 2 == 1, we
should execute a single tot+=x; operation after the loop. Moving a few
loop iterations from the start or end of the loop (and thereby changing the
bounds of the loop) is called “loop peeling”, and is the method by which we
“peeled” off the final iteration when N is odd, thus ensuring we could safely
unroll our loopy by a factor of 2. Of course, we could also insert if statements
inside the loop to check whether it’s time to terminate; however, as we saw
in Chapter 5 in our nucleotide string bit-packing code, peeling is far better
than inserting if statements into the loop. It sometimes helps to perform
loop peeling manually, but the compiler is often quite good at loop unrolling.

This is yet another reason why constexpr values can be so helpful: if N
is constexpr, then we will know at compile time whether the N/2 operation
will round down and require us to execute one more tot+=x; operation.
Furthermore, if N is a small constexpr value such as constexpr int N=10,
the loop could be unrolled fully to 10 separate lines of the form tot+=x;,
and so there would be no overhead from the loop.

There is a downside to loop unrolling and peeling: they produce larger
executables, which stresses the instruction cache. If we manually unroll, it
also can hurt the compiler’s ability to see our code as a whole, which can
prevent it from recognizing the pattern in the many statements and thus

23This is referred to as “Duff’s device”.
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obscure our code from optimizations such as loop fission and fusion.

10.3.7 Loop fission & fusion

Loop fission refers to the process by which a loop of the form
for (int k=0; k<N; ++k) { tot a+=vec a[k]; tot b+=vec b[k]; } can
be split into two loops for (int k=0; k<N; ++k) tot a+=vec a[k];

for (int k=0; k<N; ++k) tot b+=vec b[k]; }. Loop fusion refers to the
complementary process by which two loops can be fused into a single loop.

Loop fission is beneficial when the two (or more) inner tasks are difficult
enough that the compiler and CPU benefit from focusing on one task at a
time (e.g., focusing on one task can benefit register allocation, ensuring there
are plenty of registers for every variable being used). Loop fission can also be
beneficial for cache performance when large arrays are being accessed24. But
this fission occurs at the cost of performing all of the loop overhead multiple
times. Loop fusion has complementary pros and cons: loops with simple
tasks inside can often benefit from fusion, which eliminates the need to pass
through a second time (including executing the loop overhead twice instead
of once).

The compiler benefits from our guidance in this regard, but overall it
performs loop fission and fusion fairly well. Note that fusion cannot be safely
performed if the modifications in one loop can influence the modifications
performed inside the other. The ways in which this will limit us are larger
than they may seem, and relate to the discussion of aliasing below.

10.3.8 Loop-invariant code

Another substantial optimization is the factoring out of “loop-invariant
code”. This is code of the form for (int k=0; k<N; ++k) tot+=k-z*y/2;.
The expression z*y/2 is loop-invariant code, in that it depends nei-
ther on the loop variable k nor on any modifications performed
in previous iterations of the loop. This code could therefore
be rewritten to avoid the repeated computation of z*y/2: const

double t=z*y/2; for (int k=0; k<N; ++k) tot+=k-t;.

24If the cache is fully associative (not likely because of the difficulty in creating the
circuitry) or set-associative (more likely), then this is not as important. But if the values
in the array are being accessed multiple times, focusing on one array at a time can be a
big benefit.
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loop-invariant code can be obscured by numeric challenges men-
tioned below, where the order of operations matters. For exam-
ple, for (int k=0; k<N; ++k) tot+=k*x+k*y; will likely not dis-
cover and factor out to a loop-invariant version const double

t=x+y; for (int k=0; k<N; ++k) tot+=k*t;. Also, like many opti-
mizations mentioned in this chapter, the ability of the compiler to find
loop-invariant code is also hindered by aliasing.

10.3.9 Basic code reuse

Code reuse occurs when the same expression is computed multiple times.
This is quite similar to identifying loop-invariant code, except with loop-
invariant code, we have the loop structure to give an indication that some-
thing is computed again and again. In contrast, code reuse needs to find
these expressions occurring in multiple different places, which is much more
difficult.

For example, the code a=w-(x*y+z); b=w+(x*y+z); could compute the
expression x*y+z a single time, and then reuse that result both times it is
used. Even more sophisticated code reuse on a=w-x*y; b=w-x*y+z; would
replace the second line with b=a+z. Code reuse is fairly difficult, but com-
pilers do succeed in doing it sometimes. One of the more difficult concerns
are numeric, where following the precise order of operations given by the
programmer may obscure an algebraically identical expression25.

Code reuse is one additional reason why it’s beneficial to write orga-
nized, straightforward functions for recurring tasks, especially when they
don’t modify class members or global variables26: if we call those functions
repeatedly in the same scope, there is a good chance the compiler will identify
the reused expression. If, on the other hand, we were to write the recurring
expression each time it is used instead of calling a function, the compiler
then must first identify the recurring expression.

The challenges in code reuse also reveal yet another reason why
constexpr code is so powerful. This becomes very important to why tem-
plate recursion can perform so well (discussed in Chapter 12). Even if code

25They may be algebraically identical on theoretical numbers, but not so on float and
double types, as described below.

26For member functions such as accessors, it also helps the compiler if we label the
functions as const.
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reuse fails, integer operations on constants (and constexpr function calls)
can be simplified.

10.3.10 Basic SIMD

Basic SIMD (briefly mentioned in Chapter 5) can often help perform
multiple parallelizable27 operations simultaneously. For example, if we
declare four 32-bit floats, two sums could be added simultaneously
using a 64-bit SIMD register if it’s available on our CPU. On the
code float w=1.5; float x=2.3; float y=-0.9; float z=0.5; w+=y;

x+=z;, these additions could be automatically performed in parallel by the
compiler.

10.3.11 Basic dead code elimination

Dead code elimination is straightforward, and thus compilers excel at it.
Essentially, all that needs to be done is to find computations in the CFG
where the result is never used.

10.3.12 Copy propagation

“Copy propagation” is the process by which low-level copying operations on
primitives may be factored out if a temporary variable is not needed. For
example int y=z; int x=y; can be simplified to int x=z; if the variable
y is not subsequently used. This optimization is a cousin of dead code elim-
ination.

10.3.13 Chip-specific optimization

Once the code is being optimized as machine code, the precise details of
our machine can matter substantially (e.g., whether we have 128-bit SIMD
registers or only 64-bit SIMD registers). Compiling with the -march=native

can be very useful; this optimization tells the compiler that our executable
does not need to run on the entire family of processors, but that we only
want to run it on our processor. This optimization would not be suitable if
we wanted to ship binaries of our software to people with potentially different

27According to the CFG.
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CPUs, but it is great if we intend to run high-performance software on our
own CPU. In practice, this flag can achieve a large benefit on high-end CPUs.

Where -march=native enables greater back-end optimizations, the corre-
sponding front-end optimization flag -mtune=native enables our code to be
“tuned” for the local CPU. This can influence the decisions such as reorder-
ing and unrolling loops. By using our own cache specifications, the compiler
could potentially convert two nested for loops into four nested block for
loops (as we did manually for the block matrix transposition in Chapter 9),
and choose the sizes of the inner block for loops so that they access the
largest loop ranges that will fit in our L1 cache. In practice, this compilation
flag does not achieve as high of a speedup as -march=native.

10.4 Tasks where compilers still struggle

10.4.1 Aggressive inlining

Function inlining is slightly similar to loop unrolling: calling a function in-
curs overhead, and simple, small functions can be simply copied and pasted
everywhere they are called. This is especially helpful on very short, simple
functions, where the overhead of pushing parameters to the stack and read-
ing the results off of the stack is as expensive as the actual work done by
the function. This frequently occurs in simple mathematical functions, such
as the kind that take one numerical argument and return a single numeric
expression of that argument (e.g., squaring).

The compiler tries to automatically identify good candidates for inlining,
but where we know it should be performed, we can mark the function for
forced inlining. There is an inline keyword available, but it’s a common
misconception that it forces inlining28. Even in the original C standard, it
was merely a hint to the compiler. Today it is widely regarded as doing
nothing at all.29 To force inlining on newer versions of clang and gcc, write
attribute ((always inline)) inline immediately before the function

declaration30. This will force the compiler to inline the code.

28If there was ever an understandable misconception to have about C++, this would be
a pretty good one to choose: “Hey, let’s make a new keyword: inline.” “Great, does it
inline the code?” “No. It does nothing.”

29In this case, “hint” has come to mean a suggestion box directly over a paper shredder.
30Or prototype
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Sometimes, it is even benefial to inline larger functions. One reason this
can be useful is when one function calls another and they both compute the
same expression, which could be reused, but it won’t be reused unless it
occurs in the same scope. Likewise, loop fission and fusion must occur in the
same scope.31 Inlining a function gives the compiler a great chance to see
the code as a whole and to perform more front-end optimizations.

You can check whether a function is inlined by looking at the .s file of
assembly code file produced by the -S compilation flag: if the function has
its own declaration in the assembly code, it was not inlined.

For simple expressions, C-style macros are still a great option, which will
automatically be inlined. Note that the macro #define square(x) x*x will
produce the wrong result for square(5+4), which it will define as 5+4*5+4.
For this reason, liberal use of parentheses are necessary to protect macro
arguments33: #define square(x) (x)*(x).

If we are too aggressive with our inlining, it will force larger compile times
and larger executables (which stress the instruction cache more). It may also
prevent the compiler from identifying reusable code (because function calls
have essentially been find-replaced with their return values, and so the fact
that we call the same function in several places may need to be uncovered
again). For these delicate reasons, inlining is more challenging than loop
unrolling, and benefits from a hands-on approach.

10.4.2 Advanced SIMD

SIMD support is constantly improving, but it is still not reliably as good
as a good assembly programmer who knows the SIMD instructions in-
side and out35. Sometimes SIMD operations will be blocked because
our data is not ordered in a manner that can be seen as contiguous.
For example, if we declare four float types, but they are broken up

31It’s difficult32 to split or fuse loops that occupy different scopes and that are nowhere
near one another in the code.

32And by that, I mean impossible.
33There are plenty of extra parentheses wandering lonely in the dark reaches of YouTube

comments these days, so just use some of those. Wait, can everyone else see those? Or
am I having some sort of seizure?34

34“Are macros /ourfunctions/ ?” Nope: Technically, macros aren’t functions. Nice try,
anon. Stay in school.

35This is more difficult than it sounds with CPUs improving as rapidly as they are.
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by char types, it could hinder the ability of the compiler to automati-
cally use SIMD: float w=1.5; char a=’a’; float y=2.3; char b=’b’;

float x=-0.9; char c=’c’; float z=0.5; will either obscure the SIMD
operations in w+=y; x+=z; or, alternatively, it may require an extra copy
operation to put the float types into the SIMD register in a contiguous
fashion.

We can help the compiler substantially by arranging SIMD-capable ar-
guments in an order where the left-hand and right-hand arguments to
the operation are contiguous. Even without interrupting the float types
with char types, if we had declared the variables in a different order,
float w=1.5; float y=2.3; float x=-0.9; float z=0.5;, then the ar-
guments (as seen packed into 64-bit registers) would no longer be contiguous.
Also important for SIMD is the alignment of data: if we declare a single 8-bit
char before the four float types, then the addresses may not fall into blocks
that are still contiguous, but which are shifted 8 bits from the 64-bit align-
ment helpful to our SIMD computations. For this reason, it can be useful to
keep differently sized primitives segregated into their own regions of memory
and, if we must place a char upstream of the float types, to pad it with 3
more char types so that the alignment is not altered.

For example, our matrix transposition could use SIMD to perform 4× 4
transpositions in the base case (if we can fit four of our data type in a
SIMD register). This is not yet something that you can reliably count on the
compiler doing for you.

As an alternative to trusting the compiler with SIMD and an alterna-
tive to using assembly, SIMD “intrinsics” provide a C interface to the SIMD
hardware. This can be used to write semi-portable36 high-performance code.

10.4.3 Custom hardware

Compilers are not yet smart enough to detect the intent of our code and
to replace it with equivalent code that runs on other hardware. An obvious
example of this is the GPU: the compiler simply will not detect highly par-
allelizable code and send it to the GPU. Likewise, when loading a large file,
instead of looping and reading it one byte at a time, it is sometimes possible
to dump it directly into RAM with help from the hardware and the operating

36That is, it’s portable when the processor has the desired SIMD hardware. For use on
generic case where the target processor is unknown, judicious #ifdef statements essentially
write the SIMD intrinsics for each level of SIMD capability.
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system. This “direct memory access” (DMA) will be discussed in Chapter
17.

For these reasons, it is sometimes advantageous to use standard func-
tions like memcpy, rather than write our own. This is because the standard
functions communicate our high-level intent to the compiler, and so the com-
piler can easily interface with a library optimized for our hardware (if it is
available).

10.4.4 Numeric challenges

Numeric challenges are one of the largest reasons why our guidance is still
essential to helping the compiler optimize our code. Consider this operation:
w=x<<(y-z);, which performs a subtract and a bit shift on some integers.
Will the compiler be smart enough to rewrite this operation as x<<y>>z? It
will not, but not necessarily because it doesn’t understand the qualitative
similarity. It’s because the two are not always numerically equivalent. If
y is larger than the number of bits in our int type, for instance y=1024,
then x<<y will shift every bit off the edge and yield 0, which will then be
shifted right by z and produce a final result of 0. But if z is close to y, e.g.,
z=1020, then the statement w=x<<(y-z); will perform w=x<<4;, which will
not necessarily be 0.

In this manner, the finite precision available destroys some algebraic prop-
erties that we know37. And with floating point values, this becomes much
more difficult than the integer case we just demonstrated. With integer val-
ues, we can reorder our operations safely (as long as we don’t experience
overflow as demonstrated above): x+y+z should be equivalent to x+z+y. But
with floating point values, which do not take on the precise values but merely
an approximation of it, this can actually change the result. x+y-x should
yield y in the integer case (again, provided there is no overflow). But with
floating point values, underflow can also occur: 1 + 1e-16 - 1 yields 0.0,
not 1e-16. Likewise, Listing 10.2 demonstrates that 7*x is not guaranteed
to precisely equal x+x+x+x+x+x+x when we work with floating point math.
If we don’t mind which of these is used, we can use the flag -Ofast instead
of -O3; but this requires more caution than it would seem: not only does nu-
meric error accumulate38, -Ofast improves performance by messing up the

37Know and love
38i.e., “the death of a thousand cuts”39
39Not to be confused with “death with a thousand cats”, which apparently is what the
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Listing 10.2: Demonstration of numeric error in floating point types. The
output is 4.8999999999999994671 4.9000000000000003553.

#include <iostream>

int main() {

std::cout.precision(20);

std::cout << 7*0.7 << " " << 0.7+0.7+0.7+0.7+0.7+0.7+0.7 << std::endl;

return 0;

}

mathematical results, e.g., disabling inf and nan from working properly.

For this reason, the compiler is doing its duty not to reorder floating
point expressions, because doing so may slightly alter the result. And so,
when we deem the change acceptable (often it is), we must do this manu-
ally. This has implications that limit our ability to exploit constexpr float-
ing point types as effectively as we can exploit constexpr integer types.
For this reason, C++ forbids floating point template arguments; permitting
them would not only be a challenging engineering task, it would require a
universal standard for how we approach these numerical discrepancies, and
we would risk SomeClass<7*0.7> not matching its appropriate declaration
SomeClass<0.7+0.7+0.7+0.7+0.7+0.7+0.7>.

Likewise, advanced mathematical equivalences are generally not discov-
ered by the compiler; just because you provide a recurrence that numerically
converges to the golden ratio40, the compiler will not figure this out and
simply replace that code with the golden ratio41.

Because of these many reasons, we see yet another reason why λ = 1.5
as the growth constant for vectors from Chapter 6 was beneficial in yet
another way: we could multiply the length by 1.5 exactly by performing
length+=(length>>1);, thus eschewing any floating point math that would
give the compiler pause.

compiler is planning for the person at the beginning of the chapter.
40This could occur if we’re numerically computing the ratios of the nth Fibonacci number

to the (n−1)th. When n is even remotely large, we will get an approximation of the golden
ratio.

41That would be amazing.
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10.4.5 Object sovereignty

One of few reasons why truly object-oriented C++ code may be slower than
C-style code is that modifying one object (e.g., discarding a member variable
that went unused in that instance or discarding a member variable that is
constexpr) may not be permitted because doing so would only be possible
if all other instances of that type could be modified. For example, if we have
struct Point { int x; int y; };, and we declare Point p; p.x=7; but
never initialize or use p.y, it is not guaranteed that y will disappear, because
that may only be possible if all Point objects ignore y. If some Point objects
use y, then it cannot be discarded from them, and so discarding it from p

would result in Point objects with different sizes.

The autonomy of objects is a great benefit when it comes to software
engineering, but for optimization, that sovereignty of an object can obscure
useful optimizations. This is particularly the case for member variables ini-
tialized with constexpr values and never changed; as long as some objects of
that type are not initialized with a constexpr value, the compiler may not
propagate this as fully. Note that once everything is in assembly or machine
code, the back-end compiler may still exploit some of these situations. But
at the front end, when we are seeing the code as a more algebraic structure,
the rigidity of objects is an obstacle.42

10.4.6 Advanced code reuse and automated design of
algorithms

No compiler is yet smart enough to automatically change from one non-trivial
algorithm to another. For instance, when we wrote selection sort code, the
compiler did not automatically detect that it was sorting and then replace our
method with the fastest known comparison-based sorting algorithm. Such a
feature may sound cool in theory, but it would also be unwieldy: remember
that in Chapter 3 we exploited the fact that selection sort was better for
small problems.43

42Yet another reason why writing correct, fast, and readable code is really a great quest.
43Imagine that paperclip from Microsoft Office jumping into your beautiful code and

shouting, “Hey! It looks like you’re writing a sorting algorithm. . . wouldn’t you like to use
bubble sort?”44

44This terrifying thought experiment shows why a good programmer should control the
memes of production– otherwise, those memes might end up controlling you. . .
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These advanced tasks are more of an AI problem than classic compilation.

10.4.7 Memory management

Consider the buffered mergesort implementation from Chapter 3 Question
2: It performed better than the version with on-the-fly memory allocation.
But the compiler was not able to automatically convert one into the other.
Memory allocations and deallocations essentially modify global variables, and
so they introduce a lot of complexity into the CFG (when you think of the
unmentioned global variables that each �new call modifies, then the order of
allocations matters because they form RAW and WAW dependencies). But
even if the compiler could convert this for us, there are reasons we might not
want it to. One reason is that buffered implementations sometimes achieve
greater efficiency45 by allocating many things at once. This may prove faster
in some cases, but it may also require a larger up-front space requirement.
Trading space for time is an art, and compilers are not yet sophisticated
enough for us to trust them with this46.

10.4.8 Aliasing

One of the largest and most ubiquitous obstacles to optimization is aliasing.
This is where the compiler does not know at compile time to which addresses
pointers refer, and so it is forced to assume that writing to the pointer’s data
(e.g., *ptr=7;) could modify nearly any non-const value of the same type.
Aliasing is such a large concern that we devote the entirety of Chapter 11 to
it.

10.5 The future

The future of optimizing compilers is bright: as more and more of our lives
is compterized, code matters more and more, and so producing faster, more
reliable executables from the same code is of great importance. The future of
compiler optimizations lies in finding deeper equivalences between different
pieces of code. Imagine compilers that can identify an algorithm at a high

45E.g., as the result of better cache performance
46If the compiler produces code that it thinks is fast, but which requires 64GB of RAM

and you only have 32GB, what can you do?
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level and replace it with a faster version, or a compiler that can automatically
visit a matrix in cache-optimized order.

Compilation is a mathematical optimization problem: we want to make
the fastest code such that no differences– on the inputs we’ve given– are
produced in the output. When seen this way, the future of compiler design
closely resembles computer algebra. Such futuristic methods are sometimes
referred to as “term rewriting systems”.

Some compilers and languages are built for even better exploiting the
constexpr speedups mentioned here: code in languages like javascript

can rewrite themselves and optimize as they go. At any given instant, all of
the values currently in variables are known, and so they could temporarily be
seen as constexpr. In this manner, “just in time” (JIT) compilers continue
to perform optimizations at the last second. A static compiler like the current
version of gcc cannot see ways to speed up x/y if y is not known at compile
time; however, even if y is chosen randomly at runtime, a JIT compiler can
re-optimize after a particular value of y is chosen. The JIT compiler can test
whether y==2 once during runtime after y is chosen. In doing so it incurs a
penalty that a static compiler like gcc does not. But in the case where y==2,
sometimes a large amount of code might be rewritten by the JIT compiler. If
that re-optimized code consumes a large amount of processing time, pausing
to re-optimize after y is chosen may be well worth the penalty of pausing to
re-optimize.

Just like hardware, compilers are always being improved, and so when we
report a runtime, it is really a runtime of (1) the code with (2) the compiler
on (3) our hardware. This is important to remember when you’re trying
unsuccessfully to recreate a speedup that you once remember achieving.47

Questions

1. [Level 1] From the perspective of performance, name one pro and
one con of manually inlining short functions rather than calling them.

47More often than not, these “cold fusion” speedups will first be observed late at night
when you’re sleep deprived, and when you’re trying to reproduce the speedup, it’s easy to
forget that you were using a different compiler. . . 48

48“Tomorrow when you wake up with dreams of applied math still on your pilow, you’ll
wonder if it wasn’t all a dream. But you’ll know where you were when you get your tuition
bill!”
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Focus on performance and not software engineering.

2. [Level 1] Can the compiler find loop-invariant code when divid-
ing a long vector of double types by a double as performed here:
for (int i=0; i<N; ++i) vec[i]/=1.7;? Why or why not?

3. [Level 2] Draw the CFG for the following block of code for several
int types:
a=b+c; b=c+d; c=d+e; a=b+c; b=c+d; c=d+e; z=a+b+c+d+e;

a-=z; b-=z; c-=z; d-=z; e-=z;

Describe opportunities to exploit parallelism.

4. [Level 2] Draw the CFG for the following block of code for several
int* types:
*a=*b+*c; *b=*c+*d; *c=*d+*e; *a=*b+*c; *b=*c+*d;

*c=*d+*e; *z=*a+*b+*c+*d+*e; *a-=*z; *b-=*z; *c-=*z;

*d-=*z; *e-=*z;

Describe opportunities to exploit parallelism.

5. [Level 2] Consider, Listing 10.3, the code for Floyd-Warshall49, an
O(n3) algorithm for finding the shortest paths in a graph.

On the section of code labeled // 2. Compute shortest paths

with dynamic programming:, could loop reordering be performed
safely? Try initializing a simple distance matrix and comparing the
computed result with the original loop order against a version where
the loop on variable k is swapped with the loop on the i. Are the
results the same?

6. [Level 3] Assume that the loops in the previous question could be
reordered safely. Would exchanging the loops yield better or worse
performance?

7. [Level 3] Gauss multiplication is a scheme for multiplying two complex
numbers (a+bi)·(c+di) via only 3 multiplications. Create a benchmark
where you allocate two arrays, x and y, both of length N=1<<20 filled

49“I’m in Tampa Bay, Memorial Day weekend ‘86. Floyd-Warshall walks into the Mc-
Donalds. The man ordered ordered 8,000 chicken nuggets. Now that’s a champion! Now
that’s a champ!”
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Listing 10.3: Floyd-Warshall.

void floyd_warshall(double*result, const double*distance_mat, const

unsigned int n) {

// 1. Copy in direct distances:

for (unsigned int i=0; i<n; ++i)

for (unsigned int j=0; j<n; ++j)

result[i*n+j] = distance_mat[i*n+j];

// 2. Compute shortest paths with dynamic programming:

for (unsigned int k=0; k<n; ++k)

for (unsigned int i=0; i<n; ++i)

for (unsigned int j=0; j<n; ++j)

// Allow the path to pass through vertex k if it is a shortcut

// from i to j:

// result[i,j] = min(result[i,j], result[i,k] + result[k,j])

result[i*n+j] = std::min(result[i*n+j], result[i*n+k] +

result[k*n+j]);

}

with complex numbers, and where you multiply each element-wise so
that a new array z[i]=x[i]*y[i]. Write your own struct for com-
plex numbers, where the real and imaginary parts are double types.
Implement a version with and a version without without Gauss mul-
tiplication. Does Gauss multiplication help? Would the compiler be
able to figure out Gauss multiplication on its own? Why or why not?
Compare or contrast to the case where the expression x<<(y-z) vs.
x<<y>>z is computed.
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Chapter 11

Aliasing and restrict Pointers

11.1 Aliasing1: a confusing plot twist

There is an old jazz song that goes, “Everyone loves my baby, but my baby
just loves me. . . ” Now, to the untrained ear, this might sound like a perfectly
ordinary expression of affection: the singer is celebrating the fidelity of their
relationship, which is even more impressive considering the desirability of
their partner. But if we delve deeper, there is more going on here. If everyone
loves [my] baby, then [my] baby also loves [my] baby. Which is fine and well,
but when you also combine this knowledge with the fact that [my] baby just
loves [me], then the only logical conclusion is that the singer is their own
baby.3

Because our prior biases are against this sort of coincidence, these make
for good twists in mystery novels and films. In computer science, this is
called “aliasing”: when two different variables actually refer to the same
memory underneath. Unlike in books and movies, where these coincidences
are celebrated, in programming aliasing can be hazardous and inefficient.

1In signal processing, “aliasing” refers to the phenomenon where sampling a signal
below the Nyquist frequency may add artifacts into the sampled result, making it impos-
sible to guarantee that the original signal can be perfectly recovered from the samples.
Although this is distinct from our use of aliasing here, they both share a common root:
multiple data looking or being the same. In UNIX, alias is a command that lets us
rename a command, and in spycraft, an alias is another name for the same person.2

2Are you getting confused by the fact that aliasing can refer to multiple different things?
Well, buckle up: this chapter will be full of that kind of stuff.

3In GDR, baby is you!4
4But in all seriousness, in East Berlin, exception throws you.
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When you declare two integers int x,y;, then the compiler allocates space
on the stack for each5; x is distinct from y, and so aliasing between them is
simply impossible. After all, x and y store their data in distinct addresses,
locations in memory that are known at compile time.

However, when we use pointers, aliasing is a frequent concern. For in-
stance, when we are making a deep copy of an object that uses dynamically
allocated memory, e.g., writing the operator = for our own vector class.
Usually, when we run vec a=vec b, the steps are as follows: First, free the
memory allocated by vec a. Second, allocate a new vector for vec a with
enough space for all elements in vec b. Third, copy every element from
vec b into vec a. These steps work fine when vec a and vec b refer to dis-
tinct objects. But if they were the same object, then there would be a large
problem: the first step, which frees the memory allocated to vec a would
simultaneously free vec b, and in doing so, all of the data would be irre-
trievably lost. Of course, when the objects are allocated on the stack and
the arrays that they store are non-overlapping, then this potential pitfall
will not occur. But what if we have pointers to vectors? When executing
*vec ptr a=*vec ptr b, it may not be possible to know at compile time
whether vec ptr a and vec ptr b refer to the same vector object. For this
reason, it is common to put a check in the operator = of classes that use
dynamic memory: if the two objects are the same, then the assignment op-
eration is abandoned6.

A large effect of aliasing that we saw in Chapter 10 is that it often pre-
vents successful compiler optimizations. Consider a function that accepts
two pointer arguments int*x,int*y. If the function executes *x=*y; ++*y;,
these operations will not safely run in parallel. This is because of the case
where the two pointers refer to the same memory, i.e., where x=y. In that
case, modifying *x also modifies *y, and so the first line must terminate
before ++*y can safely be executed.7

5Or, possibly, a dedicated register for each if there are enough registers available to
never need to store them on the stack.

6After all, if they are the same object, then there is no point copying anything over.
7This is onathem Fight Club situations where you later learn *a and *b referred to the

same address in RAM all along.8
8Donald Kaufman: “I’m putting in a chase sequence. So the killer flees on horseback

with the girl, the cop’s after them on a motorcycle and it’s like a battle between motors
and horses. . . like technology vs. horse.” Charlie Kaufman: “And they’re still all one
person, right?” . . . Charlie Kaufman: “How could you have somebody held prisoner in a
basement and. . . and working at a police station at the same time?” Donald Kaufman:
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11.2 C vs. Fortran

Aliasing is commonly referred to as the single reason why Fortran, which
has no pointers, was favored over C vector and matrix operations. Because
it has no pointers, Fortran arrays cannot be aliased. On the downside, this
means that it is impossible to point to a “slice”9 of an array or a matrix.
Because of the influence on compiler optimizations, Fortran’s more limited
vocabulary for data structures allowed compilers to optimize better: aliasing
never need be considered; however, this was also a reason that C became so
popular: the ability to use pointers made it much easier for implementing
complex data structures.10 With the restrict keyword, it should always be
possible to write C code that is as fast as a good Fortran implementation.

11.3 Aliasing of arrays

It may seem like the compiler could just check for aliasing. But this
would require comparing all pointer pairs at runtime11, and the ad-
dress referred to by some of these might not be known at compile
time, because of the stochastic nature of malloc and new operations.
But aliasing is not restricted to the case where the pointers themselves
have the same addresses; aliasing can also occur when two arrays share
some addresses. For example, consider the following code: int*xy=new

int[128]; int*x=xy; int*y=xy+64; int*mix=x+32;. The code will use
three arrays, x, y, and mix, each of which we will treat as being 64 el-

[pause] “Trick photography.”
9A slice of a matrix can be implemented by storing the pointer to the start of the

memory used, the new number of rows, the new number of columns, and the old number
of columns (so that we can jump 1 row ahead in the matrix). Slices are useful because they
don’t need to make local copies, and instead look at a “window” of the existing memory.
This can be better than copying for preserving cache locality, but slices also introduce
more aliasing concerns.

10In Fortran, it would be possible to make an ersatz pointer into an array by simply
storing an integer index that you’d like to refer to in the array; however, it is not possible
to specify which array is being indexed (doing so would require a pointer to an array),
and so we’re back where we started. For this reason, implementing a linked list would
be simpler in C or C++ than in Fortran, and implementing a fancy data structure like a
Fibonacci heap would likely be quite frustrating in Fortran.

11Compiler: “WHAT TIMELINE IS THIS?!”
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ements in length12. If we write to x[32], it will also modify mix[0].
So if we pass these three arrays as pointers to some function void

modify arrays 64(int*a, int*b, int*c);, which modifies its three pa-
rameters, then that function must be cautious and assume that its three
parameters may use overlapping memory addresses.

Because of this, essentially any function that modifies pointer argu-
ments must be compiled as valid in the case where aliasing among those
pointer arguments occurs. This may sound trivial, but it can have
serious implications. Consider the CFG for the following statements:
int k=rand()%64; a[k]=8; b[0]=a[7]; c[64-k]=a[k];. Without con-
sidering aliasing, the third statement c[64-k]=a[k] could use the fact that
we’ve just set a[k]=8, and so the third statement could be simplified to
c[64-k]=8. But we are unsure of whether a[k] and b[0] refer to the same
memory, and so a[k] must be re-read in case it was changed by the second
line. Aliasing can create a significant hindrance on compiler optimization:
values that could be stored in a register and reused sometimes must be fetched
from RAM13.

Listing 11.1 demonstrates a routine that uses two arrays to modify a third
array. This code runs in 0.01443 seconds. The reason the performance isn’t
better is because the compiler is unsure whether source, dest, and eight

refer to the same memory, and so some values may need to be re-read from
RAM (or at least not saved in registers in an elegant manner). It is interest-
ing to investigate whether specifying source and eight as const, meaning
their values cannot be changed by the function, will improve performance
(Listing 11.2). Unfortunately, this const version has essentially the same
average runtime: 0.01443 seconds.

Listing 11.1: Operations on arrays with potential aliasing.

#include "../Clock.hpp"

#include <iostream>

12Note that this length of 64 is not specified anywhere in our code; we could very well
treat x, y, and mix as arrays 32 elements in length, and even though we wouldn’t be using
memory as efficiently as possible, it would nonetheless be valid. Remember that these
pointers are simply memory addresses.

13As always, when we request an address from RAM, we may get the data from the
cache, but this is generally unknown, and so we should be prepared that it will come from
RAM. Unless we’ve really tuned our code for a particular chip, it’s better to acknowledge
that the cache vs. RAM distinction is not really in our hands.
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// If this function is inlined, the compiler may be smart enough to

// tell that the memory footprints of dest, source, and eight do not

// overlap. In a real use-case (rather than a simple benchmark like

// this one), the compiler will rarely be able to tell whether the

// memory is really non-overlapping.

__attribute__ ((noinline))

void apply(float* dest, float* source, float* eight, const unsigned long

n) {

// n/8:

for (unsigned long i=0; i<(n>>3); ++i) {

for (unsigned long j=0; j<8; ++j)

dest[(i>>3)+j] = source[(i>>3)+j]*eight[j];

}

}

int main() {

const unsigned long N = 100000;

const unsigned long REPS = 256;

Clock c;

float *x = new float[N];

for (unsigned long i=0; i<N; ++i)

x[i] = i;

float *y = new float[N];

for (unsigned long i=0; i<N; ++i)

y[i] = x[i];

float z[] = {7,1,4,5,2,3,6,8};

c.tick();

for (unsigned int r=0; r<REPS; ++r) {

apply(y, x, z, N);

}

c.ptock();

return 0;

}

Listing 11.2: Operations on arrays with potential aliasing. Unlike List-
ing 11.1, here source and eight are declared const.

#include "../Clock.hpp"

#include <iostream>

// If this function is inlined, the compiler may be smart enough to
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// tell that the memory footprints of dest, source, and eight do not

// overlap. In a real use-case (rather than a simple benchmark like

// this one), the compiler will rarely be able to tell whether the

// memory is really non-overlapping.

__attribute__ ((noinline))

void apply(float* dest, const float* source, const float* eight, const

unsigned long n) {

// n/8:

for (unsigned long i=0; i<(n>>3); ++i) {

for (unsigned long j=0; j<8; ++j)

dest[(i>>3)+j] = source[(i>>3)+j]*eight[j];

}

}

int main() {

const unsigned long N = 100000;

const unsigned long REPS = 256;

Clock c;

float *x = new float[N];

for (unsigned long i=0; i<N; ++i)

x[i] = i;

float *y = new float[N];

for (unsigned long i=0; i<N; ++i)

y[i] = x[i];

float z[] = {7,1,4,5,2,3,6,8};

c.tick();

for (unsigned int r=0; r<REPS; ++r) {

apply(y, x, z, N);

}

c.ptock();

return 0;

}

11.4 The restrict keyword

Because aliasing is such an issue for performance, the C language offers a
slightly obscure keyword to help preserve performance when using point-
ers: restrict. Declaring a pointer as restrict means that we are guar-
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anteeing the compiler that aliasing with this address (or array) does not
need to be considered. We are guaranteeing that the block of memory
to which this pointer refers will be modified only through the pointer it-
self. The restrict keyword is used in C in this manner: int*restrict

x=malloc(10*sizeof(int)). Listing 11.3 rewrites Listing 11.1 so that
restrict pointer parameters are used. Just by adding the restrict key-
word14, the performance improves substantially to 0.006501 seconds.

Listing 11.3: Operations on arrays where aliasing is forbidden by restrict.
Unlike Listing 11.1, here source and eight are declared restrict, explicitly
forbidding aliasing.

#include "../Clock.hpp"

#include <iostream>

// If this function is inlined, the compiler may be smart enough to

// either 1) eliminate everything as dead code or 2) tell that the

// memory footprints of dest, source, and eight do not overlap (note:

// in a real use-case (rather than a simple benchmark like this one),

// the compiler will rarely be able to tell whether the memory is

// really non-overlapping). Also, depending on how the compiler works,

// if the variables for dest and source are not declared as restrict

// in the function that calls apply, the compiler inlining this code

// could even make the code slower.

__attribute__ ((noinline))

void apply(float*__restrict dest, float*__restrict source,

float*__restrict eight, const unsigned long n) {

// n/8:

for (unsigned long i=0; i<(n>>3); ++i) {

for (unsigned long j=0; j<8; ++j)

dest[(i>>3)+j] = source[(i>>3)+j]*eight[j];

}

}

int main() {

const unsigned long N = 100000;

const unsigned long REPS = 256;

14This makes it sound slightly easier than it is in general: in general, we can only apply
the restrict keyword when we are sure the pointers refer to distinct memory, and this is
not always possible.15

15If it were always possible, then the creators of the C language would simply have made
every pointer restrict, i.e., it would mean that C were like Fortran in that aliasing
would not be possible.
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Clock c;

float * x = new float[N];

for (unsigned long i=0; i<N; ++i)

x[i] = i;

float * y = new float[N];

for (unsigned long i=0; i<N; ++i)

y[i] = x[i];

float z[] = {7,1,4,5,2,3,6,8};

c.tick();

for (unsigned int r=0; r<REPS; ++r) {

apply(y, x, z, N);

}

c.ptock();

return 0;

}

C++ is not a proper superset of the C language, and unfortunately does
not include restrict in the standard; however, restrict is so useful, that
many C++ compilers still support it, and it is generally regarded as a kind
of pseudo-standard in C++. Both gcc and clang offer a restrict keyword
instead.

Aliasing can be more costly than it might seem: it can make loop-invariant
code (mentioned in Chapter 10) look as if it might not be loop invariant. To a
person, a loop such as for (int k=0; k<N; ++k) x[k]+=y[7]*z[7]; may
seem to feature the loop-invariant expression y[7]*z[7], which could be
computed once before the loop and then used in ever iteration16. But when
we consider aliasing, the compiler is correct to be cautious and not assume
that y[7] and z[7] are constant during the loop; the may be aliased to some
indices of x, and so may unexpected change during the loop.17

Although it’s slightly obscure, restrict is of utmost import in high-
performance applications like graphics and scientific computing; proper use
can improve performance, even when the code is written in an optimized
C-style that does not allocate or deallocate objects on the fly. This is why we

16In this manner, the loop now computes N additions instead of N additions and N

multiplies.
17Human: “Compiler, it’s OK, this block of data is probably my baby.” Compiler:

“Maybe I know more than you think I do, Mark. . . ”
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declared the pointer in our in-house vector class in Chapter 6 to be restrict,
and may help us improve performance over std::vector; however, there
is a caveat: if we start declaring pointers such as int*part=&vec[i],
and then modifying them together with our restrict-using vector, e.g.
for (int k=0; k<N; ++k) vec[k]+=part[k];, then we break our promise
to the compiler that we’ve guaranteed there will be no aliasing of vec. This
error would likely be difficult to find, because it will not be known during
compile time. It will likely not even crash our program18; instead, our pro-
gram will just give numerically wrong results. So even though restrict is
quite useful for performance, do not use it haphazardly.19

Questions

1. [Level 1] Rewrite Listings 11.1 and 11.3 to build aliased array argu-
ments and pass them into the apply functions (note that this will be
invalid in the case of Listing 11.3). Compare the results element by el-
ement. Do they match? Repeat this until you get a case where invalid
use of the restrict keyword in your modified version of Listing 11.3
produces an incorrect result.

2. [Level 2] Listing 11.2 demonstrates that aliasing can still affect const
pointer types. Can aliasing affect constexpr types? Create an example
to justify your answer.

3. [Level 2] A function accepts an argument int*arr. Inside the func-
tion, a local variable int t=7; is declared, and then subsequently,
arr[k]=3; is performed for some integer k (the value of k is unknown
at compile time). After that line runs, is t==7? What would need to
happen so that t==3?

4. [Level 3] Adapt your matrix multiplication code (both naive and trans-
posed) from Chapter 9 Question 5 to use restrict matrix parameters.
Does the assembly code change at all? Is there an effect on perfor-
mance?

18As it might if there were a memory error
19I wouldn’t give this aliased restrict code to my worst enemy. . . just in case my worst

enemy happened to be me.



206 CHAPTER 11. ALIASING AND RESTRICT POINTERS



Chapter 12

Metaprogramming and
Template Recursion

12.1 The evil of recursion

Recursive functions often offer a simple means with which we can turn ideas
into code, such as the simple recursive factorial implementation from Chapter
10 or the simple recursive Fibonacci implementation in Listing 12.1; however,
recursive functions have significant downsides: They are constantly pushing
and popping arguments and return values on and off of the stack. This
pushing and popping may not only invade larger swaths of memory (poor for
cache performance), it also prevents functions from computing in registers
only (and avoiding RAM altogether). This is because all functions, even
those taking no parameters and offering no return value1 will nonetheless
need to push its “instruction pointer”2.

1This is, of course, an illustration. Without modifying global variables, it’s quite
difficult to discern what such a function would even be used for.

2The current address of code being executed before the function is called. It is necessary
to store the instruction pointer before jumping to another region of the code to make a
function call, because when that function call is finished, we need to remember the next
line of machine code that was going to run.

207
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Listing 12.1: A simple recursive Fibonacci implementation.

unsigned long fibonacci(unsigned i) {

if (i <= 1)

// i=0 and i=1 return 1:

return 1ul;

// Since i>1, using (unsigned int)(i-1) and (unsigned int)(i-2) is

safely going to decrease:

return fibonacci(i-1) + fibonacci(i-2);

}

12.2 The challenge of iterative implementa-

tions

Converting an elegant recursive function3 to an iterative, loop-driven imple-
mentation can be quite tricky. Furthermore, doing so may require pointers
(which may result in aliasing) or may introduce more complicated control
flow4, which make compiler optimizations more difficult. For this reason, we
may find ourselves stuck between two extremes: on one hand, we have the
overhead and lack of optimizability of using recursion and on the other hand
we have the challenge of overcoming the obstacles inherent to an iterative
implementation.

12.3 Integer templates

A clever approach to this problem is template recursion5. In C++, templates
allow us to use generics: If we implement a class to store a vector of int

types, then creating a vector of double types should have a lot of reusable
code. C++ enables this reusable code through templates, meaning we write

3Such as fast Fourier transform (FFT), Strassen matrix multiplication, Karatsuba mul-
tiplication, quicksort, etc.

4E.g., more loops and if statements
5“How did this tradition first get started? I’ll tell you. . . I don’t know.” But I will say

this: Good artists borrow, great artists steal. Do you know who said that? It was me.6
6And if you doubt that, then consider: was I the first one to say “ ‘Good artists

borrow, great artists steal.’ Do you know who said that? It was actually me.” If we
continue inductively, at some point it must become true. . . Wait, is that right?
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the class for a compile-time argument typename T, and then our vector will
work with any type T.7 In the implementation of templates, the compiler
essentially performs a find-replace for each unique T used with that template
class. This enables us to write the template class one time, but then to reuse
it with various T. Because of the find-replace semantics used for template
arguments, all template arguments must be constexpr.

There is an obscure feature of C++: we can also accept integer-
like8 template arguments. Thus, instead of declaring a template class
as template <typename T> class C { ...};, we could declare it as
template <unsigned I> class C { ...};. Where the former template
class will compile to a class for each unique type T used, the latter will
compile to a class for each unique unsigned int used. This can be quite
useful when implementing non-trivial10 but constant-sized data types. For
example, std::bitset takes an integer template argument (the number of
bits needed). Likewise, if we were implementing a 1024-bit integer and 4096-
bit integer classes, we could do both simultaneously by creating a template
class with an integer template argument.

Of course, many applications where we use integer template arguments
could be performed using C-style integer arguments; however, as we learned in
Chapter 10, constexpr types can result in many beneficial optimizations. By
compiling to a different class for each unique integer template argument, each
of these classes can be optimized completely around its particular arguments.
For instance, a loop for (int i=0; i<N; ++i) f(i); with a constexpr

int N can be peeled and unrolled perfectly at compile time (without any
ambiguity as to whether N is evenly divisible by the amount by which we un-
roll the loop, etc.). When we specify multiple classes with different template
N arguments (e.g., the 1024-bit and 4096-bit integers mentioned above), each
of these cases will be optimized for their particular choice of N. This can yield

7Beware: some of the vector classes that we implemented in Chapter 6 use malloc,
realloc, and free. They are still compatible with templating, but they are only valid
with primitive types of T, e.g., int, double, char, . . . , because malloc and free do not
call constructors and destructors (respectively).

8I.e., int, short, long, char, unsigned, bool, . . . 9
9You may wonder, “Why don’t we just allow arbitrary template arguments? Why

constrain ourselves to the integers?” Well, consider the inexact mathematics of floating
point arithmetic mentioned in Chapter 10: these numeric inconsistencies, however slight,
could result in C<7*0.7> not to match C<0.7+0.7+0.7+0.7+0.7+0.7+0.7>, as mentioned
briefly in Chapter 10.

10i.e., not small enough to fit inside a primitive
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a substantial speedup.

12.4 Recursing using template arguments

Template arguments can also be included for function definitions, such as
with template <bool PRINT SORTED> void f() {...}. Given this fact, it
feels that we would do better to use template functions to somehow help us
implement recursive functions. But there is a problem with this. Consider
our attempt at implementing a template-recursive factorial function, i.e., a
recursive factorial function where we recurse using the template arguments
(Listing 12.2). Essentially, the problem is the definition of the recursive base
case: templates do not use runtime information (if statements are only called
at runtime), and so what we think of as the base case, factorial<0> makes
mention of factorial<-1>. Since we’ve defined the template argument to be
unsigned, then -1 will mean -1u = 65535. Without calling the if statement
at compile time, the compiler does not see that factorial<-1> is not needed.
The result is not precisely inifinite recursion (because our finite precision
loops back to the beginning eventually), but it is so large that it might be
seen as infinite.11

The solution to this problem is to embed our recursive functions into
template classes instead of template functions. Unlike template functions,
template classes permit specialization, the process by which we can specify
a custom implementation for some template arguments. This specialization
can be made for cases like std::vector<bool>, which uses a bit-packed im-
plementation, but classes can also be specialized for particular integer tem-
plate arguments, such as a base case Factorial<0>. By doing so, we can
implement a working template-recursive factorial (Listing 12.3). It is cer-
tainly more verbose than the standard recursive version (we must invoke our
wrapper class each time we want to call the function)13, but it has an added

11Infinite recursion is like babies having babies having babies11, which can be a pretty
hard life (especially in this economy). Hey, have you seen Dark Water (the Japanese
version, of course12)?

12With the exception of The Ring, the Japanese originals [flicks bangs out of eyes], we
can agree, are generally better than the Hollywood remakes.

13I bet you’re thinking, “Come on, this is a pain, no one’s ever going to want to use
this!” Well, beware, that’s also what they said to Mr. Za: They said, “Listen, Pete,
nobody cares about your garlic-tomato-cheese on bread. Spaghetti’s what’s in right now,
it’s what’s cool, it’s what’s hip, and it’s gonna stay hip. Please show Mr. Za the door,
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Listing 12.2: A broken attempt to perform recursion using function tem-
plate arguments. This recursive factorial function produces an error saying
that the maximum template recursion depth has been exceeded. This is be-
cause the function factorial<I> requires a new function factorial<I-1>,
which inductively continues until every possible unsigned int has been ex-
hausted: Subtracting eventually produces -1u, which is the largest unsigned
int possible. The compiler understandably balks at us asking to create 65536
separate functions, and will only do so if we force it to by compiling with the
flag -ftemplate-depth=N for some large value N>65536.

template <unsigned I>

unsigned long factorial() {

if (I <= 0)

return 1ul;

// Since I>0, using (unsigned int)(I-1) is safely going to decrease:

return I * factorial<I-1>();

}

benefit: all of the recursions are unraveled at compile time, and because our
function simply returns operations of the template integer argument (which
is necessarily constexpr), we end up with a runtime of 0s; all of the multipli-
cations are performed at compile time. This is not the same as the previous
cases where we found a runtime of 0s due to unwanted dead code elimina-
tion: in this case, we correctly print out factorial(12), but with no actual
recursive function calls.

12.5 Template-recursive Fibonacci

We can implement a template-recursive Fibonacci benchmark (Listing 12.4)
in a manner reminiscent of our template-recursive factorial (Listing 12.5).
Where the simple recursive version runs in 0.01642s, the template-recursive
version produces the same result in 0s. Template-recursive calls are unraveled
at compile time, and each of those results is computed as a constexpr at

won’t you?” And God knows how wrong they were...
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Listing 12.3: A working template recursive factorial. A template specializa-
tion is used for the recursive base case.

#include "../Clock.hpp"

#include <iostream>

template <unsigned i>

class Factorial {

public:

static unsigned long evaluate() {

return i*Factorial<i-1>::evaluate();

}

};

template <>

class Factorial<0u> {

public:

static unsigned long evaluate() {

return 1ul;

}

};

int main() {

const unsigned long REPS = 12800000;

unsigned long res;

Clock c;

for (unsigned r=0; r<REPS; ++r) {

res=Factorial<12>::evaluate();

}

c.ptock();

std::cout << res << std::endl;

return 0;

}
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Listing 12.4: A benchmark working with a recursive Fibonacci implementa-
tion.

#include "../Clock.hpp"

#include <iostream>

unsigned long fibonacci(unsigned i) {

if (i <= 1)

return 1;

return fibonacci(i-1) + fibonacci(i-2);

}

int main() {

const unsigned long REPS = 1<<10;

srand(0);

Clock c;

unsigned long tot=0;

for (unsigned long r=0; r<REPS; ++r)

tot += fibonacci(20);

c.ptock();

std::cout << tot << std::endl;

return 0;

}

compile time (possible because the results are integer types14).

Of course, the same procedure can be used in a more general case: We
need not constrain ourselves to simple recursive functions like factorial or
Fibonacci. We can easily apply the same techniques to a whole host of

14If we directly enable -ffast-math or use -Ofast instead of -O3, then the compiler has
the option of performing more extensive constexpr merging of float and double types
at compile time, but at the expense of possibly losing precision as described in Chapter
1015.

15Sometimes this is not as bad as it may sound: both 0.7*N and 0.7+0.7+· · · +0.7 may
be slightly imprecise, and so if we are not intentionally choosing one of these, then it is
not so harmful to let the compiler make the arbitrary decision in a way that benefits the
runtime.
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Listing 12.5: A template-recursive Fibonacci equivalent to Listing 12.4.

#include "../Clock.hpp"

#include <iostream>

template <unsigned i>

class Fibonacci {

public:

static unsigned long evaluate() {

return Fibonacci<i-1>::evaluate() + Fibonacci<i-2>::evaluate();

}

};

template <>

class Fibonacci<1> {

public:

static unsigned long evaluate() {

return 1u;

}

};

template <>

class Fibonacci<0> {

public:

static unsigned long evaluate() {

return 1u;

}

};

int main() {

const unsigned long REPS = 1<<10;

Clock c;

unsigned long tot=0;

for (unsigned r=0; r<REPS; ++r) {

tot+=Fibonacci<20>::evaluate();

}

c.ptock();

std::cout << tot << std::endl;

return 0;

}
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recursive functions, including those that modify arrays (e.g., merge sort).
This opens up vast possibilities for divide and conquer algorithms16. Where
simple recursive implementations generally produce a smaller executable17,
template-recursive versions can optimize each recursive call separately: a
template recursive implementation of Karatsuba’s integer multiplication al-
gorithm will produce distinct pieces of code depending on whether two 128-
bit numbers are being multiplied or whether two 256-bit numbers are being
multiplied. For many optimizations, including loop unrolling and SIMD vec-
torization, the best approach will depend heavily on the problem size. Having
distinct pieces of code for each integer argument means that the compiler can
optimize each separately, in a manner customized for its size.

When unraveling recursive calls to separate functions, a common concern
is producing very large executables18; however, in many cases, this concern
is not as significant as we might first believe. Many divide and conquer
algorithms divide in half, and so the number of functions produced by the
compiler is logarithmic in the problem size19.

12.6 Using non-constexpr arguments

Another common concern is how we go about applying our template-recursive
methods when we do not know the size of the problem at compile time.
First of all, for a divide and conquer algorithm like merge sort, which halves
the problem size in each recursive call, the number of function calls will
grow logarithmically as mentioned above. Computing an upper bound on
reasonable problem sizes will therefore produce only a moderate constant
number of functions needed. For instance, ensuring that we can sort lists of
size n < 232, we would only need to produce 32 separate functions.

Nonetheless, note that some problems, such as sorting or matrix multipli-
cation, are not constrained to powers of 2, which will make implementation
more challenging. One approach to take is to embed a problem in another

16Myrnyy’s template-recursive FFT implementation, GFFT, is a seminal work in this
arena.

17After all, they only produce one function definition.
18As we saw in Chapter 10, this can decrease performance by burdening the instruction

cache with too much code.
19E.g., using a template integer argument of 1048576 will produce only 20 unique

functions.20
20“Rumors of my recursive depth have been greatly exaggerated.”
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problem, which is the size of the next power of 2 that would contain it. In
this manner, sorting a list of 61 values would be treated as sorting a list of
length 64, enabling us to implement only a logarithmic number of functions
even when we consider inputs that are not powers of 2.

Calling the appropriate one of these functions at runtime is
tricky: if we have a non-constexpr value int n, we cannot execute
Fibonacci<n>::evaluate(). Thus, on the pre-computed possible values
(as listed above), we need to map the runtime value int n to the appropri-
ate constexpr value. There are two principal ways of accomplishing this:
The first uses inheritance. All classes for a particular problem, regardless
of the template argument, will inherit from a common base class, and the
function evaluate will be made virtual instead of static. In this manner,
we can construct an array Base**arr, where each element is a Base*. Index
0 will point to a Derived<0> type, index 1 will point to a Derived<1> type,
etc. This strategy has a quality that we can map a runtime value int n to
its corresponding template class Derived<N> (where N=n) at runtime; but
it also has a disadvantage: using virtual functions occludes the compiler’s
ability to determine which function is being called until runtime, meaning
the template-recursive calls may be less efficient21 Therefore, an alternate
approach is to simply try different constexpr values until the one matching
N is found. For example, if int n=1024, meaning we’re calling merge sort
on a list of length 1024, then we could test n==1, then if that was false, test
n==2, then if that was false, test n==4, and so on. In this manner, we will
only need to execute log(n) branch statements before we can match int n

with an equivalent constexpr int N, and then use N as the template argu-
ment. Although this takes O(log(n)) steps instead of O(1) steps (as the array
approach above would), it uses no virtual functions and so the compiler can
optimize the code much more effectively.

12.7 Metaprogramming

The above problem, where we want to test if (n==1) and then else if

(n==2) and so on, is itself a problem that we would rather solve with
code instead of manually writing out each if statement. This is possi-
ble with “metaprogramming”, the art of creating code that creates other
code. This itself could be accomplished with template recursion: in each

21For example, they may not be inlined as effectively.
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template class with template parameter N, we would perform a compar-
ison, and if that comparison succeeded (i.e., if (n==N), then we would
call Function<N>::evaluate(), knowing that it was the valid equivalent
to Function<n>::evaluate().22

Rather than write the C++ code ourselves, we write meta code (e.g.,
via further template recursion) that writes highly optimized C++ code for
us. When paired with C-style high-performance implemenations23, template
metaprogramming can produce some of the fastest code.

One example of this is forced loop unrolling. Given the iterative code
in Listing 12.6, we can force the compiler to unroll it by using template
recursion (Listing 12.7). Where the iterative version from Listing 12.6 runs
in 0.000067s, the version with the fully unrolled loop from Listing 12.7 runs
in 0s and produces an identical result. This is possible because, once the loop
is fully unrolled, the program consists of a composition of constexpr integer
values, which can all be evaluated at compile time24. This faster runtime
performance comes at a cost: where the iterative version took 0.217s to
compile, forced loop unrolling took 11.309s to compile25. In this manner, we
exchange a longer compile time for a shorter runtime (just as we do when we
enable compiler optimizations).

Template-recursive code is highly dependent on the compiler to produce
good optimizations after the code has been unraveled. For this reason, it can
be useful to test it with multiple compilers (e.g., gcc, clang, and icc).

Questions

1. [Level 1] How can template recursion be used on problems whose size
is unknown at compile time? What conditions are necessary?

Projects

1. [Level 2] Create the fastest template-recursive implementation of

22Because n is not constexpr, it is not a valid template argument.
23e.g., using double* restrict instead of std::vector<double>
24This can be verified by looking into the assembly code (when compiling with -O3 as

usual): there is no loop and the final result, 1465881288704, appears as a magic number
there.

25“Boy. . . That escalated quickly.”
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Listing 12.6: A simple iterative program.

#include "../Clock.hpp"

int main() {

const unsigned int N=1<<14;

Clock c;

unsigned long tot=0;

for (int i=0; i<N; ++i)

tot += i*i;

c.ptock();

std::cout << tot << std::endl;

return 0;

}

Strassen matrix multiplication you can. What performance benefit do
you observe compared to a version that uses standard recursion?
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Listing 12.7: Using template metaprogramming to force full loop unrolling.
This program must be compiled with -ftemplate-depth= flag larger than
the size of the loop; -ftemplate-depth=17000 suffices.

#include "../Clock.hpp"

template <unsigned int I, unsigned int N>

class SumSquaresScaled {

public:

__attribute__ ((always_inline))

static constexpr unsigned long value() {

return I*I + SumSquaresScaled<I-1,N>::value();

}

};

template <unsigned int N>

class SumSquaresScaled<0,N> {

public:

static constexpr unsigned long value() {

return 0;

}

};

int main() {

const unsigned int N=1<<14;

Clock c;

unsigned long tot=SumSquaresScaled<N-1,N>::value();

c.ptock();

std::cout << tot << std::endl;

return 0;

}
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Chapter 13

Multithreading with OpenMP

13.1 Multithreading

Multithreading is a standard way to improve performance, and it has con-
tinued to grow in importance as CPUs continue to feature more and more
cores.1

Multhreading allows multiple independent processes to run simultane-
ously2. Multithreading has many hazards, such as the possibility of “race
conditions”, where two threads are simultaneously reading from and writing
to the same data. In general, it is difficult to share non-const data effectively
between multiple threads, and so this is generally verboten. In short, writing
multithreaded code is an art, and it is generally difficult to do very well.

1There are a few reasons why it’s become popular to feature many cores instead of
a higher clockspeed. Two key reasons are the fact that the power consumption grows
rapidly with the clockspeed and the fact that even the speed of light takes some time to
propagate across the chip, and so if the clockspeed is too high, there will not be sufficient
time for the clock signal to fully propagate across the chip before the next clock signal
begins (which can cause some circuits to no longer be synchronized). Multicore chips also
easily achieve large speedups on some highly important, absurdly parallelizable problems,
such as numeric linear algebra or testing primality. This is the basis of high-performance
GPU computing.

2Often, each core will have a dedicated L1 and L2 cache, but L3 caches are sometimes
shared. This can add challenges as described briefly in Chapter 9.
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13.2 Basic OpenMP: parallelizing for loops

In practice, multithreading can be performed by using calls specific to
your operating system. Because this severely limits the portability of
code, multiple operating systems, including Windows, Linux, and UNIX
distributions, are “POSIX” compliant, meaning that among other things,
they have shared functionality for handling multithreading. When we
#include <pthread.h>, we have access to a multithreading specification
that works across multiple operating systems. Unfortunately, the API with
which we interface with the pthread library still sometimes does depend on
the operating system.

OpenMP offers a much simpler means by which we can interface with
multithreading libraries3. OpenMP consists of different #pragma commands
and functions, which can be used to decorate our code, and which will be
seen by the compiler to automatically build multithreaded code when we
add the compilation flag -fopenmp. OpenMP allows us to more easily write
multithreaded code, regardless of our operating system; however, as we will
see, it is not completely trivial to accelerate our code with OpenMP, even on
parallelizable problems.

Listing 13.1 shows a first example, where we want to perform x[i]+=7 on
every element in an array x. On one hand, this code is trivially parallelizable,
and so it feels like a good candidate to speed up with multithreading. By
simply adding #pragma omp parallel for above the for loop over i (see
Listing 13.2) and adding -fopenmp to our g++ compilation flags, we can use
multiple cores4.

Unfortunately, Listing 13.1 runs in 0.0005921, while the OpenMP adapted
code from Listing 13.2 runs in 0.002180s. The reason for this is the overhead
for multithreading: the cost of starting a new thread is not large, but com-
pared to a single addition, that overhead can be large. Here, we should
be wondering precisely how many threads were automatically started by
OpenMP and whether this number of threads was large enough to incur
more harm than good (which it clearly did). OpenMP can be used more
effectively on this problem, but we would need to seize more control.

However, on an alternate problem where the cost per iteration is more

3But OpenMP may not be as efficient as hand-made code directly made for your oper-
ating system.

4This can be verified by opening your computer’s System Monitor program and ob-
serving multiple cores engaged while the program runs.
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Listing 13.1: A parallelizable loop with a low cost per iteration.

#include "../Clock.hpp"

#include <iostream>

int main() {

const unsigned long N = 600000;

double * x = new double[N];

for (unsigned long i=0; i<N; ++i)

x[i] = i;

Clock c;

for (unsigned long i=0; i<N; ++i)

x[i] += 7;

c.ptock();

// To prevent dead code elimination:

std::cout << x[0] << std::endl;

return 0;

}
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Listing 13.2: The loop from Listing 13.2, parallelized via OpenMP.

#include "../Clock.hpp"

#include <iostream>

int main() {

const unsigned long N = 600000;

double * x = new double[N];

for (unsigned long i=0; i<N; ++i)

x[i] = i;

Clock c;

// Compile this with -fopenmp to enable multithreading:

#pragma omp parallel for

for (unsigned long i=0; i<N; ++i)

x[i] += 7;

c.ptock();

// To prevent dead code elimination:

std::cout << x[0] << std::endl;

return 0;

}
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Listing 13.3: A parallelizable loop with a higher cost per iteration.

#include "../Clock.hpp"

#include <iostream>

#include <cmath>

int main() {

const unsigned long N = 600000;

double * x = new double[N];

for (unsigned long i=0; i<N; ++i)

x[i] = i;

Clock c;

for (unsigned long i=0; i<N; ++i)

x[i] = sin(x[i]);

c.ptock();

// To prevent dead code elimination:

std::cout << x[0] << std::endl;

return 0;

}

expensive, that simple #pragma omp parallel for does yield an improve-
ment: Listing 13.3 shows a similar absurdly parallelizable problem, but where
the more expensive trigonometric function sin is used. By adding that single
#pragma (Listing 13.4), the runtime improves from 0.02121s to 0.005914s5.

13.3 Using OpenMP with sections

Listing 13.6 shows a serial implementation of a simple loop that sums an
array, which has an impressive runtime of 3.906e-09s; however, this fast run-
time turns out to be an artifact of dead code elimination. Listing 13.5 fixes
this by simply printing the result of the sum, making it relevant; the cor-
rect runtime of this serial implementation is 0.0002309s. Listing 13.7 shows
a corresponding version with attempted use of OpenMP. Summing can be

5That’s a pretty decent speedup for just adding one line of code and a single compilation
flag.
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Listing 13.4: The loop from Listing 13.3 parallelized via OpenMP.

#include "../Clock.hpp"

#include <iostream>

#include <cmath>

int main() {

const unsigned long N = 600000;

double * x = new double[N];

for (unsigned long i=0; i<N; ++i)

x[i] = i;

Clock c;

// Compile this with -fopenmp to enable multithreading:

#pragma omp parallel for

for (unsigned long i=0; i<N; ++i)

x[i] = sin(x[i]);

c.ptock();

// To prevent dead code elimination:

std::cout << x[0] << std::endl;

return 0;

}
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Listing 13.5: Computing the sum of an array.

#include "../Clock.hpp"

#include <iostream>

int main() {

const unsigned long N = 100000;

double * x = new double[N];

for (unsigned long i=0; i<N; ++i)

x[i] = i;

double tot = 0.0;

Clock c;

for (unsigned long i=0; i<N; ++i)

tot += x[i];

c.ptock();

std::cout << tot << std::endl;

return 0;

}

done in parallel, but unfortunately in this case, Listing 13.7 does not imple-
ment parallelism correctly: the variable tot is read and written to by each
thread, making it unstable. Bugs like these are stochastic; not only do they
change when the program is run repeatedly, they also respond to changes in
our code (e.g., when we insert std::cout statements for debugging, it may
change the result, potentially even making the bug seem to disappear), and
so they are especially pernicious. For this reason, such stochastic bugs are
sometimes called “Heissenbugs”.6

What we can do is split our summation into two sections: we compute
the sum of the first half of the array, compute the sum of the second half of
the array, and then sum these half-sums (Listing 13.8). Not only does this
implementation produce the correct result, it does so in 0.001797s, a speedup
over the non-paralellized version.

6Also, if we only run our multithreaded code one time look and thus never test its
consistency, could we consider our code to simultaneously be correct and incorrect?7

7Yes. But it is traditional to put the computer in a box.
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Listing 13.6: Computing the sum of an array, but with a benchmarking error
due to dead code. Because the result of tot is never used, the program looks
artificially fast.

#include "../Clock.hpp"

#include <iostream>

int main() {

const unsigned long N = 600000;

double * x = new double[N];

for (unsigned long i=0; i<N; ++i)

x[i] = i;

double tot = 0.0;

Clock c;

for (unsigned long i=0; i<N; ++i)

tot += x[i];

c.ptock();

return 0;

}
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Listing 13.7: The loop from Listing 13.5 parallelized via OpenMP. The results
are not only unstable and incorrect, they are stochastic.

#include "../Clock.hpp"

#include <iostream>

int main() {

const unsigned long N = 100000;

double * x = new double[N];

for (unsigned long i=0; i<N; ++i)

x[i] = i;

double tot = 0.0;

Clock c;

#pragma omp parallel

for (unsigned long i=0; i<N; ++i)

// Error! tot will be modified simultaneously by multiple threads

tot += x[i];

c.ptock();

std::cout << tot << std::endl;

return 0;

}
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Listing 13.8: Computing the sum of an array with OpenMP sections. This
code will use 2 threads and fixes the error caused by the shared variable in
Listing 13.7

#include "../Clock.hpp"

#include <iostream>

int main() {

const unsigned long N = 100000;

double * x = new double[N];

for (unsigned long i=0; i<N; ++i)

x[i] = i;

double tot = 0.0;

Clock c;

double tot_first_half = 0.0;

double tot_second_half = 0.0;

// Parallel things coming up:

#pragma omp parallel

{

// Parallel sections to be described here:

#pragma omp sections nowait

{

// This is one parallel section:

#pragma omp section

{

for (unsigned long i=0; i<N/2; ++i)

tot_first_half += x[i];

}

// This is a second parallel section:

#pragma omp section

{

for (unsigned long i=N/2; i<N; ++i)

tot_second_half += x[i];

}

}

}

tot = tot_first_half + tot_second_half;

c.ptock();

std::cout << tot << std::endl;

return 0;

}
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13.4 Computing a marginal

We can use parallelism to accelerate the computation of a marginal, that is,
computing the sum of every row in a matrix. A serial version (Listing 13.9)
runs in 0.3340s, but the parallelized version (Listing 13.10) runs in 0.1242s.

13.5 Limits of multithreading

Parallelism can achieve large speedups on certain problems, but it is no
replacement for strong algorithms, cache localization, SIMD usage, compiler
optimizations, etc. In short, there are limits to parallelism8. Even so, more
and more powerful GPUs and paradigms like map-reduce (which can easily
be run across clusters) mean that the future is likely to see an even strong
case for parallel methods. This is partly true simply because we can easily
solve parallelizable problems, and so we gravitate towards those problems
that we can easily solve.9

Questions

1. [Level 2] After compiling Listing 13.10 with the OpenMP flag, run
the executable using UNIX system time: which of these three reported
times matches most closely with the wall clock time from our Clock

class? Why? Which of these types of times would you most want to
report when presenting the success or failure of a speedup to a CEO at
a company where you work?

2. [Level 3] Update your matrix multiplication methods from Chapter 11
Question 4 (both the naive and transposed versions) to use OpenMP.
Which performs better, adding #pragma omp parallel for above the
outer-most loop, adding the #pragma around the inner-most loop in-
stead, or adding the #pragma around both loops? Record the speedup
each produces (compared to the non-OpenMP version)? Which version

8“Even Dr. Manhattan can’t be everywhere.”
9A friend’s wife from Microsoft said that developers are told to optimize their code un-

der the assumption that it will have infinite threads available; this is a strong endorsement
of the prediction that parallelism in hardware will continue to improve faster than clock
speed.
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Listing 13.9: Computing the marginal of a matrix. The sum of each row is
computed.

#include "../Clock.hpp"

#include <iostream>

int main() {

const unsigned long N = 1<<14;

double * x = new double[N*N];

for (unsigned long i=0; i<N*N; ++i)

x[i] = i;

double * row_sums = new double[N];

Clock c;

for (unsigned int i=0; i<N; ++i) {

double tot = 0.0;

for (unsigned int j=0; j<N; ++j)

tot += x[i*N+j];

row_sums[i] = tot;

}

c.ptock();

for (unsigned int i=0; i<10; ++i)

std::cout << row_sums[i] << " ";

std::cout << "..." << std::endl;

return 0;

}
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Listing 13.10: Parallelized version of Listing 13.9.

#include "../Clock.hpp"

#include <iostream>

int main() {

const unsigned long N = 1<<14;

double * x = new double[N*N];

for (unsigned long i=0; i<N*N; ++i)

x[i] = i;

double * row_sums = new double[N];

Clock c;

#pragma omp parallel for

for (unsigned int i=0; i<N; ++i) {

double tot = 0.0;

for (unsigned int j=0; j<N; ++j)

tot += x[i*N+j];

row_sums[i] = tot;

}

c.ptock();

for (unsigned int i=0; i<10; ++i)

std::cout << row_sums[i] << " ";

std::cout << "..." << std::endl;

return 0;

}
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(the naive or transposed) achieves a larger improvement from paral-
lelism? Why?



Chapter 14

Direct Memory Access

We noted at the end of Chapter 5 that bit-packed string operations can be
so fast that the performance bottleneck will come from loading the ASCII
file itself. Listing 14.1 demonstrates the method we’d used to load a large
file consisting of G, A, T, and C characters. That version loaded via the >>

operator via std::ifstream, and then used std::string::operator += to
append the character to the string. When loading a genome with 4434395
ASCII characters, it runs in 0.04744s.

Listing 14.1: Loading an ASCII file via the >> operator of std::ifstream
and the std::string::operator +=.

#include "../Clock.hpp"

#include <fstream>

#include <string>

int main() {

Clock c;

std::ifstream fin("../nucleotide-string/bigger.txt");

std::string genome;

char base;

while (fin >> base)

genome += base;

c.ptock();

std::cout << "Read " << genome.size() << " characters: " << genome[0]

<< genome[1] << genome[2] << genome[3] << "..." << std::endl;
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return 0;

}

14.1 Avoiding std::string::operator +=

As we observed in Chapter 6, appending to std::vector via push back was
far slower than allocating the proper size in advance and using the [] operator
to insert the next value. This was because the std::vector<T>::push back

function would sometimes resize the vector, and even using an amortized
Õ(1) scheme via exponential growth, the runtime constant from resiz-
ing was significant. The std::string::operator += behaves similarly to
std::vector<T>::push back, and thus it is far better to load the file by
allocating the correct number of characters in an array and then inserting
their data via the [] operator (Listing 14.2). On the same 4434395-character
ASCII file, this runs in 0.04022s; however, this moderate speedup comes at
a cost: this new version currently uses a hard-coded value for the number of
characters in the file. This is poor design (it is brittle to changes in the file
size).

Listing 14.2: Loading an ASCII file without using the
std::string::operator +=.

#include "../Clock.hpp"

#include <fstream>

#include <string>

int main() {

// Warning: hard-coded value should match the number of characters

// in the file:

constexpr unsigned long N=4434395;

Clock c;

std::ifstream fin("../nucleotide-string/bigger.txt");

char*genome = new char[N+1]; // Leave one extra character for the null

char

genome[N] = ’\0’;

char base;

for (unsigned long i=0; i<N; ++i) {

fin >> base;
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genome[i] = base;

}

c.ptock();

std::cout << "Read " << N << " characters: " << genome[0] << genome[1]

<< genome[2] << genome[3] << "..." << std::endl;

return 0;

}

14.2 Direct memory access

“Direct memory access” (DMA) is a technique for fetching large amounts
of contiguous data from/to disk to/from RAM. DMA can be substantially
faster when reading and writing large files.1

There are multiple reasons why DMA can be faster than using
std::ifstream::operator >>, but they can be concisely summarized by
two related cases: First, we are telling the program what we want at a high
level, and thus may benefit from an optimized implementation.3 Second,
there is the possibility that those software implementations of DMA may
interface with custom hardware, a sort of wide pipe going directly from disk
to RAM and bypassing the CPU.

Listing 14.3 demonstrates how we would load the ASCII text file via
DMA. Note that unlike our previous approach (Listing 14.2), we do not need
to hard code the size of the file; instead, we compute this at runtime by
computing the difference between the end and start of the file. By using
DMA, we decrease the runtime to 0.002495s, a > 16× speedup.

1You contrarians out there might reply, “You wouldn’t really need to load files so large
that they would be an issue, and even if you did, you would probably only load the file
once. So this really isn’t that useful.” Well, if using DMA is that useless, then I challenge
someone from the future to travel in time to this moment and murder me in order to save
the human race from this unnecessary diversion. [pause] I guess no one’s coming... What
does that tell you?2

2Wait, who’s that guy in the metalic spandex jumpsuit? Is that a laser pointer? Ow, it
burns! Just kidding, no one from the future came to kill me. I guess I was right all along.

3This is reminiscent of our comments in Chapter 10 about the advantages of using the
memcpy function.
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Listing 14.3: Loading an ASCII file via DMA.

#include "../Clock.hpp"

#include <fstream>

int main() {

Clock c;

const char*fname = "../nucleotide-string/bigger.txt";

// Get file size:

std::ifstream fin(fname, std::ifstream::ate | std::ifstream::binary);

unsigned long len = fin.tellg();

char*genome = new char[len+1]; // +1 for terminating NULL

genome[len] = 0;

// Move back to the start of the file:

fin.clear();

fin.seekg(0, std::ios::beg);

// fin.read is equivalent to the following:

/*

for (unsigned long i=0; i<len; ++i)

fin >> genome[i];

*/

fin.read(genome, len);

c.ptock();

std::cout << "Read " << len << " characters: " << genome[0] <<

genome[1] << genome[2] << genome[3] << "..." << std::endl;

return 0;

}

14.3 Binary files

Our DMA implementation treats our ASCII file as a binary file; this
is an important distinction. Consider what happens each time we call
std::ifstream::operator >>: Loading the float value 7.6354 will load
the character ‘7’, followed by the character ‘.’, followed by the characters
‘6’, ‘3’, ‘5’, and ‘4’. Excluding the null-terminating character, the ASCII
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string ‘‘7.6354’’ contains 6 8-bit char types (i.e., 48 bits). The raw data
of a float type contains only 4 bytes (i.e., 32 bits). For this reason, ASCII
is often an inferior file format. What we want is to store the raw binary
data4. Not only might an ASCII representation of a float be less space
efficient, it will also take far longer to read: The >> operator needs to take
different actions depending on the next character. A numeric character is
another digit, a decimal point indicates where the decimal point lies (and is
valid only when no previous decimal point has been found in this float), and
whitespace indicates the end of the float. Furthermore, a float may be
read using scientific notation, e.g., 1.69e-17, and so the finite state machine
loading the float needs to be able to take different actions based on whether
an ‘e’ character is loaded. Together, these different options mean that an
ASCII representation of a float may be both time and space inefficient.

The downside of binary files is that they a no longer guaranteed to be
human readable; opening a .jpg file in a text editor easily demonstrates the
challenge of reading a file containing binary data5. The upside is that they
pack data very efficiently.

In the case of the genome file used here, the ASCII file can be treated
as a binary file without any conversion6. This is because the 8-bit char ‘G’

is the same in both ASCII and binary representation7; in contrast, a float

type may have disparate ASCII and binary forms. Listing 14.4 demonstrates
how we would write an array of float types in ASCII format, while List-
ing 14.5 demonstrates how we would write an array of float types in binary
format. Writing the ASCII file takes 0.5662s, while writing the binary file
takes 0.008769s8; using a binary format introduces a > 64× speedup.

Listing 14.4: Creating an ASCII file from an array of float types.

#include "../Clock.hpp"

#include <fstream>

4Note that this is different from storing an ASCII text file of 0 and 1 characters, each
of which require 8 bits despite only using 2 possible states; that would be the worst of
both worlds.

5I.e., many special characters may be used, and the file may look like a mess.
6Note that importantly, we store the genome in a standard string format, not in the

bit-packed format used in Chapter 5.
7i.e., it is an 8-bit binary integer in either case.
8Furthermore, the ASCII file may round some values to a lower number of digits;

this represents information loss and also makes the current ASCII implementation in
Listing 14.4 look more efficient than a lossless version.
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int main() {

srand(0);

const char*fname = "ascii_file.txt";

unsigned int N=1u<<20;

float*arr = new float[N];

for (unsigned int i=0; i<N; ++i)

arr[i] = rand() / 99.0;

Clock c;

std::ofstream fout(fname);

fout.precision(30);

for (unsigned int i=0; i<N; ++i)

fout << arr[i] << " ";

c.ptock();

return 0;

}

Listing 14.5: Creating an binary file from an array of float types.

#include "../Clock.hpp"

#include <fstream>

int main() {

srand(0);

const char*fname = "binary_file.txt";

unsigned int N=1u<<20;

float*arr = new float[N];

for (unsigned int i=0; i<N; ++i)

arr[i] = rand() / 99.0;

Clock c;

std::ofstream fout(fname, std::ios::binary);

fout.write((char*)arr, N*sizeof(unsigned int));

c.ptock();
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return 0;

}

We can recover the array of float types in a separate program by loading
it from the file. Listing 14.6 loads the array of float types from ASCII,
while Listing 14.7 loads the array of float types from a binary file. Loading
from the ASCII file takes 0.2662s, while loading from the binary file takes
0.001290s; the binary version yields a > 206× speedup.

Listing 14.6: Reading an array of float types from an ASCII file. The
array of float types written to ascii file.txt by Listing 14.4 is recovered
(except for any loss of precision when writing the float types).

#include "../Clock.hpp"

#include <fstream>

int main() {

const char*fname = "ascii_file.txt";

Clock c;

// For simplicity, assume we know the number of integers in the file

// (the number of bytes of data will not determine the number of

// integers in ASCII format, since integers 0 or 2 or 1 use less

// data than integer 202339):

unsigned int N=1u<<20;

float*arr = new float[N];

std::ifstream fin(fname);

for (unsigned int i=0; i<N; ++i)

fin >> arr[i];

c.ptock();

std::cout << "Read " << arr[0] << " " << arr[1] << " " << arr[2] <<

"..." << std::endl;

return 0;

}

Listing 14.7: Reading an array of float types from a binary file. The array
of float types written to binary file.txt by Listing 14.5 is recovered.
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#include "../Clock.hpp"

#include <fstream>

int main() {

const char*fname = "binary_file.txt";

Clock c;

// Get file size:

std::ifstream fin(fname, std::ifstream::ate | std::ios::binary);

unsigned long N = fin.tellg();

float*arr = new float[N];

// Move back to the start of the file:

fin.clear();

fin.seekg(0, std::ios::beg);

fin.read((char*)arr, N*sizeof(unsigned int));

c.ptock();

std::cout << "Read " << arr[0] << " " << arr[1] << " " << arr[2] <<

"..." << std::endl;

return 0;

}

Questions

1. [Level 2] Benchmark Listing 14.4 and Listing 14.5 on your machine.
Repeat the benchmark after modifying the ASCII version (Listing 14.4)
to write the float data in a lossless manner (i.e., with the precision set
to the maximum number of digits).

2. [Level 3] Consider the bit-packed nucleotide strings in Chapter 5. Cre-
ate functions to read/write a bit-packed string from/to a binary file.
Now that the bit-packed genome can be loaded directly and comple-
mented using the bitwise ∼ operator (as before, assuming the superior
bit-packed nucleotide code is used), what is the speedup of a bit-packed
program that loads and complements a genome compared to the naive,
ASCII std::string-based version first introduced in Chapter 5?



Chapter 15

FFT

The fast Fourier fransform (FFT) is widely regarded as one of the most
important algorithms of the 20th century. One interpretation of it is the
decomposition of a length-n vector “signal” into its corresponding frequency
components in O(n log(n)). Another equivalent formulation is the evaluation
of a polynomial at n unique complex x values, where the coefficients of the
polynomial are given by the n-vector. This latter interpretation is one of
the keys to understanding the significance of FFT; where decomposition into
frequency components sounds important for processing audio or video files,
fast polynomial evaluation can be used to perform polynomial multiplication
(i.e., convolution of the coefficient vectors) in O(n log(n)).

15.1 Simple, recursive Python implementa-

tion

Listing 15.1 constructs a simple, recursive implementation of the Cooley-
Tukey FFT in Python. Performing an FFT of length 215 takes 0.8428s; in
comparison, the numpy FFT implementation takes only 0.004118s1. Our in-
Python version is dramatically slower.

Several factors can contribute to the poor performance of our simple
recursive FFT in Python: First, it is written natively in an interpreted lan-
guage (as described in Chapter 2). Second, it makes local allocations in the

1numpy is written in C and Fortran and simply linked by Python); this permits users
access to benefits of both interpreted and compiled languages.

243
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variables packed evens and packed odds and in the intermediate recursive
results fft evens and fft odds; these allocations prevent compiler optimiza-
tions (compared to a buffered implementation as described in Chapter 3) and
are detrimental to cache performance (as described in Chapter 9). Third, this
recursive Python FFT uses the numpy.exp function with complex arguments,
which is computed via sin and cos functions; these functions were shown
to be quite slow in Chapter 13. Fourth, it is a recursive implementation
(overhead from standard recursion described in Chapters 10 & 12).2.

Listing 15.1: Recursive implementation of FFT in Python.

import numpy

from time import time

# this is an r(n) = 2*r(n/2) + \Theta(n) \in \Theta(n log(n)) algorithm:

def fft(vec):

n=len(vec)

if n==1:

return vec

result = numpy.array(numpy.zeros(n), numpy.complex128)

# packed coefficients eliminate zeros. e.g., f(x)=1+2x+3x**2+...,

# then e(x)=1+3x**2+... = 1+0x+3x**2+0x**3+... = (1+3y+...),y=x**2.

packed_evens = vec[::2]

packed_odds = vec[1::2]

# packed_evens(x**2) and packed_odds(x**2) for the first half of x

# points. The other half of the points are the negatives of the

# first half (used below).

fft_evens = fft(packed_evens)

fft_odds = fft(packed_odds)

# Butterfly:

2Fifth, from the perspective of slightly obscure but still quite useful mathematics, we
are also performing an FFT of a real-valued sequence; this can be implemented in roughly
half the runtime by “packing” the real vector [1,2,3,4,...] into a complex vector
[1+2j,3+4j,...]. The numpy library includes an implementation that uses this trick
for performing real FFTs, and in some numpy functions, the input vector is tested to see
if it contains complex values, and if not, the FFT is computed using the packed form
instead. Real FFTs will not be discussed here, but can be found in most signal processing
textbooks; a portable 2× speedup in one of the most important algorithms ever created
is certainly worthwhile!
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for i in xrange(n/2):

# result = evens(x) + x*odds(x), where x is a complex root of unity

# = packed_evens(x**2) + x*packed_odds(x**2)

x = numpy.exp(-2*numpy.pi*i*1j/n)

result[i] = fft_evens[i] + x * fft_odds[i]

for i in xrange(n/2,n):

# result = evens(x) + x*odds(x), where x is a complex root of unity

# = packed_evens(x**2) + x*packed_odds(x**2)

x=numpy.exp(-2*numpy.pi*i*1j/n)

# first half of points are negative of second half.

# x_i = -x_{i+n/2}, x_i**2 = x_{i+n/2}**2; therefore

# packed_evens(x_i**2) = packed_evens(x_{i+n/2}**2) and

# packed_odds(x_i**2) = packed_odds(x_{i+n/2}**2)

result[i] = fft_evens[i - n/2] + x * fft_odds[i - n/2]

return result

if __name__==’__main__’:

N=2**15

x=numpy.array(numpy.arange(N),float)

t1=time()

numpy_result = numpy.fft.fft(x)

t2=time()

print ’numpy fft:’, numpy_result

print ’took’, t2-t1, ’seconds’

print

t1=time()

recursive_result = fft(x)

t2=time()

print ’fast ft:’, recursive_result

print ’took’, t2-t1, ’seconds’

print

print ’Largest error’, max(numpy.abs(numpy_result - recursive_result))

print ’Recursive python FFT took’, t2-t1, ’seconds’

As a result of the above shortcomings, “fast” algorithms based on this
first FFT implementation will only be sped up significantly when we use
much bigger arrays3 and depending on the runtime constant of the algo-

3As we saw with sorting in Chapter 3, naive O(n2) algorithms often have faster runtime
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rithm that calls our FFT (e.g., perhaps some O(n log(n)) algorithm needs to
call our FFT 100 times), the “fast” algorithm may only be superior to the
naive approach on an array so large we cannot store it in RAM on a current
computer4.

15.2 Recursive C++ implementation

First, let us address the first source of poor performance, the fact that our
Python, which uses loops in native Python code (i.e., it does not defer the
loop to a faster numpy-like library). This is essentially a symptom of writing
C++-like code in Python and expecting it to perform well.6

Our recursive C++ implementation (Listing 15.2) is much faster than our
recursive FFT in Python. The C++ version runs in 0.07754s; however, that is
still more than 10× slower than the numpy implementation. As we saw with
other implementations in this book, the implementation matters very much;
we are essentially using a great method poorly.8

Listing 15.2: Recursive implementation of FFT in C++.

#include "../Clock.hpp"

#include <iostream>

constants.
4This is a frequent consideration with subcubic “fast” matrix multiplication algorithms,

which are notoriously difficult to make substantially faster than naive for problems that
would fit in RAM on any plausible computer.5

5These are matrices so big that just taking a picture of one and then hanging it on a
wall would make the entire building crumble. Huge matrices.

6In fact, the statement c++ is not even valid Python code; in Python, one must perform
c+=1 instead. On occasion, after spending a long time writing C++ code, you may be
tempted to write c++ in Python instead of c+=1. DON’T DO IT! It is the equivalent of
wandering around Berlin and asking, “Sprechen Sie Swiss?”7

7There are not many Swiss people in Berlin; however, there are many Swiss people
in Switzerland. Why? Because Swiss people are smart. They know where the action is!
From the mountains to the ocean, you might say that Switzerland has it all. The same
could be said (literally this time) about France. Coincidentally, France has many French
people in it, who we can presume are also very smart. Are you smart? Then there is a
chance that you may be Swiss. Or French.

8One might say that we are standing on the shoulders of giants and then jumping up
and down as hard as we can. Wearing cleats.9

9This is also known as jawing def– no, wait, snatching defeat from the jaws of victory.
Whew, that was close.
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#include <complex>

std::complex<double> complex_exp(unsigned int i, unsigned int n) {

return std::complex<double>{cos(-2*M_PI * i / n), sin(-2*M_PI * i / n)};

}

std::complex<double>* fft(const std::complex<double>*vec, const unsigned

int n) {

std::complex<double>*result = new std::complex<double>[n];

if (n == 1)

result[0] = vec[0];

else {

std::complex<double>*evens = new std::complex<double>[n/2];

std::complex<double>*odds = new std::complex<double>[n/2];

for (unsigned int i=0; i<n/2; ++i) {

evens[i] = vec[2*i];

odds[i] = vec[2*i+1];

}

std::complex<double>*fft_evens = fft(evens, n/2);

std::complex<double>*fft_odds = fft(odds, n/2);

delete[] evens;

delete[] odds;

for (unsigned int i=0; i<n/2; ++i)

result[i] = fft_evens[i] + complex_exp(i,n)*fft_odds[i];

for (unsigned int i=n/2; i<n; ++i)

result[i] = fft_evens[i - n/2] + complex_exp(i,n)*fft_odds[i - n/2];

delete[] fft_evens;

delete[] fft_odds;

}

return result;

}

int main() {

const unsigned int N=1<<15;

std::complex<double>*x = new std::complex<double>[N];

for (unsigned int i=0; i<N; ++i)

x[i] = std::complex<double>{double(i),0.0};

Clock c;

std::complex<double>*fft_x = fft(x, N);

c.ptock();
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for (unsigned int i=0; i<std::min(N,5u); ++i)

std::cout << fft_x[i] << " ";

std::cout << "..." << std::endl;

std::complex<double>*y = new std::complex<double>[N];

for (unsigned int i=0; i<N; ++i)

y[i] = std::complex<double>{double(i),0.0};

return 0;

}

15.3 An in-place C++ implementation

Like our Python implementation, the C++ implementation in Listing 15.2
allocates memory on the fly. This on-the-fly memory allocation could be
removed by using a buffer (as discussed in Chapter 3), but alternatively, we
could simply make a truly in-place implementation, which uses no buffers
whatsoever.

This is much more challenging than it would seem, because each extrac-
tion of even and odd indices (without a buffer) requires us to perform an
in-place matrix transposition of an n

2
× 2 matrix. As discussed in Chapter

9, in-place transpositions of non-square matrices are non-trivial; however,
that in-place transposition of a non-square matrix is but one of many op-
erations performed. Let us zoom out and consider the problem as a whole.
But we could do this transposition efficiently in an in-place manner, then we
could try to implement the FFT so that it modifies the vector passed to it,
overwriting it with the FFT.

Consider a length n = 8 FFT. The indices will be the following binary
integer values: 0b000, 0b001, 0b010, 0b011, 0b100, 0b101, 0b110, 0b111. If
we were able to put the even-indexed values into the first 4 indices and put
the odd-indexed values into the last 4 indices10, then the permutation would
place the original indices in this new order: 0b000, 0b010, 0b100, 0b110,
0b001, 0b011, 0b101, 0b111.

Our FFT would then recursively be called on the first half of the permuted
vector and on the second half of the permuted vector. If possible, these

10Again, this corresponds to performing an n
2 ×2 matrix transposition in place, but just

disregard this for now.
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Index First recursion Second recursion Third recursion
0b000 0b000 0b000

0b001 0b010 0b100

——–
0b010 0b100 0b010

0b011 0b110 0b110

——– ——– [NO CHANGE]
0b100 0b001 0b001

0b101 0b011 0b101

——–
0b110 0b101 0b011

0b111 0b111 0b111

Table 15.1: Permutation of a vector by recursive FFT calls with n = 8. The
final index corresponds to the bit-reversed value of the original index in the
same location.

permutations on even and odd indices at ever level of the recursion would
permute the original indices as shown in Table 15.1. At each recursion, the
least-significant bit of the index in the sub-problem is used to determine
whether the value will be moved into the first or second half of the array
(for that sub-problem size). As a result, the least-significant bit is essentially
reinterpreted as the most-significant bit. Thus, unrolling the permutations
performed by all recursions will swap each index with its bit-reversed value.

Because FFT first performs the recursive calls and then performs post-
processing, an equivalent algorithm would apply these permutations in a
bottom-up order (smallest FFT first)11. As a result, we could perform
this full permutation in advance by simply swapping indices with their bit-
reversed indices.12

11This is true for a “decimation in time” (DIT) FFT described here; the “decimation in
frequency” (DIF) FFT is equivalent, but performs the recursive calls after pre-processing
with complex arithmetic.

12A small subtlety: since the reverse of the reverse of an index is the original index,
then we only want to visit each index once (whether as the index or the reverse index);
otherwise, we will simply swap every index and then swap it back. One solution to this
is to simply swap when the index is less13 than the reversed index. This will ensure each
pair will be visited only once.

13Alternatively, we could use greater than, and as long as we are consistent, the method
will work for the same reason.



250 CHAPTER 15. FFT

Listing 15.3 performs a recursive FFT in place by performing a bit-
reversed permutation in advance and then assuming the values from even
indices at each recursion already reside in the first half of the array (while
the values from the odd indices at that recursion will be in the second half
of the array). Furthermore, we have fused the two post-processing loops
into a single loop and exploited the fact that complex exp(i+n/2,n) ==

-complex exp(i,n), and thus halved the number of trigonometric calls per-
formed.14 This approach improves runtime to 0.03185s, less than half the
runtime of our initial C++ implementation.

Listing 15.3: Recursive in-place implementation of FFT in C++.

#include "../Clock.hpp"

#include <iostream>

#include <complex>

std::complex<double> complex_exp(unsigned int i, unsigned int n) {

return std::complex<double>{cos(-2*M_PI * i / n), sin(-2*M_PI * i / n)};

}

unsigned int bit_reversed(unsigned int i, unsigned int num_bits) {

unsigned int result = 0;

for (unsigned char b=0; b<num_bits; ++b)

result |= (((i & (1<<b)) >> b) << (num_bits-1)) >> b;

return result;

}

void shuffle(std::complex<double>*vec, const unsigned int log_n) {

for (unsigned int i=0; i<(1<<log_n); ++i) {

unsigned int rev_i = bit_reversed(i, log_n);

if (i < rev_i)

std::swap(vec[i], vec[rev_i]);

}

}

void apply_fft_helper(std::complex<double>*shuffled_vec, const unsigned

int log_n) {

14Mathematically, this is true; however, they may be slightly numerically different.
Since the algorithm is derived to satisfy mathematical principles, either of these slightly
off numeric values is acceptable, and so we aren’t too bothered that this will not be true
numerically.15

15In short, it’s true theoretically, and if it isn’t true in practice, it was due to numerical
error anyway.
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const unsigned int n=1<<log_n;

if (log_n == 0) // n == 1, FFT has no effect

return;

apply_fft_helper(shuffled_vec, log_n-1);

apply_fft_helper(shuffled_vec + n/2, log_n-1);

for (unsigned int i=0; i<n/2; ++i) {

std::complex<double> twiddle = complex_exp(i,n);

std::complex<double> result_at_i = shuffled_vec[i] +

twiddle*shuffled_vec[i + n/2];

// complex_exp(i+n/2,n) == -complex_exp(i,n):

std::complex<double> result_at_i_plus_n_over_2 = shuffled_vec[i] -

twiddle*shuffled_vec[i + n/2];

shuffled_vec[i] = result_at_i;

shuffled_vec[i + n/2] = result_at_i_plus_n_over_2;

}

}

void apply_fft(std::complex<double>*dest, unsigned int log_n) {

shuffle(dest, log_n);

apply_fft_helper(dest, log_n);

}

int main() {

const unsigned int LOG_N = 15;

const unsigned int N=1<<LOG_N;

std::complex<double>*x = new std::complex<double>[N];

for (unsigned int i=0; i<N; ++i)

x[i] = std::complex<double>{double(i),0.0};

Clock c;

apply_fft(x, LOG_N);

c.ptock();

for (unsigned int i=0; i<std::min(N,5u); ++i)

std::cout << x[i] << " ";

std::cout << "..." << std::endl;

return 0;

}
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15.4 Eliminating trigonometric functions

Once we optimize other obstacles to performance (e.g., allocations, cache
misses, etc.), the runtime of the trigonometric functions will start to domi-
nate16. One solution would be to simply compute those trigonometric val-
ues in a table in advace. Furthermore, FFT draws complex values from
the unit circle18, and so half of these values computed in an FFT of size
n will be repeated in the recursions to the FFT of size n

2
. For example

sin(x + π) = −sin(x). Likewise, sin(x + π
2
) = cos(x), meaning we only

need to compute a table using cos rather than tables of both sin and cos.
Listing 15.4 implements this, computing a large trigonometric table in an
earlier offline step. It runs in 0.003732s, ≈ 10× faster than our in-place
implementation from Listing 15.3.19

Listing 15.4: Recursive in-place implementation of FFT in C++ using a lookup
table of trigonometric calls.

#include "../Clock.hpp"

#include <iostream>

#include <complex>

#include <assert.h>

// Note: Could also use symmetry to cut cache size in half or quarter

double*COS_TABLE;

const unsigned int COS_TABLE_N = 1<<20;

std::complex<double> complex_exp(unsigned int i, unsigned int n) {

// Uses fact that sin(theta) = cos(theta - pi/2)

return std::complex<double>{ COS_TABLE[i * COS_TABLE_N / n],

COS_TABLE[(i * COS_TABLE_N / n + COS_TABLE_N/4) % COS_TABLE_N]};

}

unsigned int bit_reversed(unsigned int i, unsigned int num_bits) {

unsigned int result = 0;

for (unsigned char b=0; b<num_bits; ++b)

result |= (((i & (1<<b)) >> b) << (num_bits-1)) >> b;

return result;

}

16This is because everything else is so efficient. What will happen if we remove the
trigonometric calls?17

17Bane voice: “It would be extremely efficient. . . for you.”
18These are “complex roots of unity” you sometimes hear described.
19“Let he who is without sin be very efficient.”
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void shuffle(std::complex<double>*vec, const unsigned int log_n) {

for (unsigned int i=0; i<(1<<log_n); ++i) {

unsigned int rev_i = bit_reversed(i, log_n);

if (i < rev_i)

std::swap(vec[i], vec[rev_i]);

}

}

void apply_fft_helper(std::complex<double>*shuffled_vec, const unsigned

int log_n) {

const unsigned int n=1<<log_n;

if (log_n == 0) // n == 1, FFT has no effect

return;

apply_fft_helper(shuffled_vec, log_n-1);

apply_fft_helper(shuffled_vec + n/2, log_n-1);

for (unsigned int i=0; i<n/2; ++i) {

std::complex<double> twiddle = complex_exp(i,n);

// Compute complex_exp once and reuse:

std::complex<double> result_at_i = shuffled_vec[i] +

twiddle*shuffled_vec[i + n/2];

// complex_exp(i+n/2,n) == -complex_exp(i,n):

std::complex<double> result_at_i_plus_n_over_2 = shuffled_vec[i] -

twiddle*shuffled_vec[i + n/2];

shuffled_vec[i] = result_at_i;

shuffled_vec[i + n/2] = result_at_i_plus_n_over_2;

}

}

void fill_cos_table() {

COS_TABLE = new double[COS_TABLE_N];

for (unsigned int i=0; i<COS_TABLE_N; ++i)

COS_TABLE[i] = cos(-2*M_PI * i / COS_TABLE_N);

}

void apply_fft(std::complex<double>*dest, const unsigned int log_n) {

assert(1<<log_n <= COS_TABLE_N);

shuffle(dest, log_n);

apply_fft_helper(dest, log_n);
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}

int main() {

const unsigned int LOG_N = 15;

const unsigned int N=1<<LOG_N;

std::complex<double>*x = new std::complex<double>[N];

for (unsigned int i=0; i<N; ++i)

x[i] = std::complex<double>{double(i),0.0};

fill_cos_table();

Clock c;

apply_fft(x, LOG_N);

c.ptock();

for (unsigned int i=0; i<std::min(N,5u); ++i)

std::cout << x[i] << " ";

std::cout << "..." << std::endl;

return 0;

}

There are drawbacks to this “lookup table” approach. For one thing, to
perform FFT on a vector with a large n, the size of this lookup table will grow
in Θ(n); therefore, we cannot perform an FFT in the case where a vector
just barely fits in memory20. Likewise, it isn’t perfectly fair to compare this
lookup table implementation to the others because the time for computing
the trigonometry is not included; even if that is performed offline, there is
a use-case where we will only perform a single FFT, and then never use the
table again. In that case, the trigonometric calls are still reduced (because
they are reused in the recursions), but whenever the trigonometric functions
are called, their cost should be included in the runtime. Moreover, for very
large problems, the cache impact of that table could be very significant for
large problems. E.g., if the source vector being FFTed barely fits in the L2
cache, the trigonometric lookup table could dramatically increase the cost by
producing many avoidable L2 cache misses. Because of these drawbacks, the
lookup table approach is not satisfying. We will derive an alternate approach
below.

20Unless we also utilize disk space.
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15.5 Eliminating recursive calls

We can eliminate recursive calls by using template recursion instead21. A
template-recursive implementation that also uses a trigonometric lookup ta-
ble (Listing 15.5) runs in 0.002682s. This improvement comes not only from
the elimination of recursive overhead (e.g., passing parameters and retrieving
return values through the stack), but also from an implementation that is
better suited to compiler optimizations.

Listing 15.5: Template-recursive in-place implementation of FFT in C++ with
a lookup table.

#include "../Clock.hpp"

#include <iostream>

#include <complex>

#include <assert.h>

// Note: Could also use symmetry to cut cache size in half or quarter

double*COS_TABLE;

const unsigned int COS_TABLE_N = 1<<20;

std::complex<double> complex_exp(unsigned int i, unsigned int n) {

// Uses fact that sin(theta) = cos(theta - pi/2)

return std::complex<double>{ COS_TABLE[i * COS_TABLE_N / n],

COS_TABLE[(i * COS_TABLE_N / n + COS_TABLE_N/4) % COS_TABLE_N]};

}

unsigned int bit_reversed(unsigned int i, unsigned int num_bits) {

unsigned int result = 0;

for (unsigned char b=0; b<num_bits; ++b)

result |= (((i & (1<<b)) >> b) << (num_bits-1)) >> b;

return result;

}

void shuffle(std::complex<double>*vec, const unsigned int log_n) {

for (unsigned int i=0; i<(1<<log_n); ++i) {

unsigned int rev_i = bit_reversed(i, log_n);

if (i < rev_i)

std::swap(vec[i], vec[rev_i]);

}

}

21It may sound tricky to you, and you may find yourself asking, “What will a good
implementation of this actually look like?” I don’t know– what does a gray wolf trotting
through a snowy mountain pass at sunset look like? Majestic.
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template <unsigned int LOG_N>

class FFTHelper {

public:

static void apply(std::complex<double>*shuffled_vec) {

constexpr unsigned int n=1<<LOG_N;

FFTHelper<LOG_N-1>::apply(shuffled_vec);

FFTHelper<LOG_N-1>::apply(shuffled_vec + n/2);

for (unsigned int i=0; i<n/2; ++i) {

std::complex<double> twiddle = complex_exp(i,n);

// Compute complex_exp once and reuse:

std::complex<double> result_at_i = shuffled_vec[i] +

twiddle*shuffled_vec[i + n/2];

// complex_exp(i+n/2,n) == -complex_exp(i,n):

std::complex<double> result_at_i_plus_n_over_2 = shuffled_vec[i] -

twiddle*shuffled_vec[i + n/2];

shuffled_vec[i] = result_at_i;

shuffled_vec[i + n/2] = result_at_i_plus_n_over_2;

}

}

};

template <>

class FFTHelper<0> {

public:

static void apply(std::complex<double>*shuffled_vec) {

// Do nothing

}

};

void fill_cos_table() {

COS_TABLE = new double[COS_TABLE_N];

for (unsigned int i=0; i<COS_TABLE_N; ++i)

COS_TABLE[i] = cos(-2*M_PI * i / COS_TABLE_N);

}

template <unsigned int LOG_N>

class FFT {

public:

static void apply(std::complex<double>*dest) {

assert(1<<LOG_N <= COS_TABLE_N);
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shuffle(dest, LOG_N);

FFTHelper<LOG_N>::apply(dest);

}

};

int main() {

const unsigned int LOG_N = 15;

const unsigned int N=1<<LOG_N;

std::complex<double>*x = new std::complex<double>[N];

for (unsigned int i=0; i<N; ++i)

x[i] = std::complex<double>{double(i),0.0};

fill_cos_table();

Clock c;

FFT<LOG_N>::apply(x);

c.ptock();

for (unsigned int i=0; i<std::min(N,5u); ++i)

std::cout << x[i] << " ";

std::cout << "..." << std::endl;

return 0;

}

15.6 Removing the trigonometric lookup ta-

ble

It may feel impossible to remove the lookup table without reverting to a
version that computes every sin and cos; however, this can be done by
using mathematical properties of complex roots of unity. If eθj is the first
twiddle used (where j =

√
−1), then the next twiddle will have angle 2θ and

will be written in complex polar form as e2θj. This can be written as the
first twiddle squared: (eθj)

2
. Note that we do not need to square in complex

polar form; we can simply square the complex cartesian value, and we will
have rotated an additional θ radians. Thus, by computing the first twiddle
in the outer-most recursive call, we can compute every other twiddle: the
next twiddle will always be the product of the current twiddle and the first
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twiddle in the current recursion22. This is shown in Listing 15.6.
The resulting runtime is 0.002917s, only slightly slower than the lookup

table, and significantly faster than the highly optimized FFTPACK implemen-
tation employed by numpy. This could be sped up further by specializing our
FFT template class to perform optimized FFTs on small problems without
the use of complex arithmetic. Likewise, the complex arithmetic could be
performed in a more efficient, constexpr manner. Some of these speedups
will be realized automatically by the compiler if we enable the use of fast
math: compiling with -Ofast instead of -O3 further decreases our runtime
to 0.001101s. Our initial recursive Python implementation, being > 765×
slower, pales in comparison23.

Listing 15.6: Template-recursive in-place implementation of FFT in C++ us-
ing a trigonometric recurrence.

#include "../Clock.hpp"

#include <iostream>

#include <complex>

unsigned int bit_reversed(unsigned int i, unsigned int num_bits) {

unsigned int result = 0;

for (unsigned char b=0; b<num_bits; ++b)

result |= (((i & (1<<b)) >> b) << (num_bits-1)) >> b;

return result;

}

void shuffle(std::complex<double>*vec, const unsigned int log_n) {

for (unsigned int i=0; i<(1<<log_n); ++i) {

unsigned int rev_i = bit_reversed(i, log_n);

if (i < rev_i)

std::swap(vec[i], vec[rev_i]);

}

}

template <unsigned int LOG_N>

class FFTHelper {

public:

static void apply(std::complex<double>*shuffled_vec) {

constexpr unsigned long N=1ul<<LOG_N;

22Furthermore, the first twiddles between recursions are related to one another; however,
we do not yet use this.

23I.e., it looks like a steaming pile of garbage: https://en.wikipedia.org/wiki/List_
of_burn_centers_in_the_United_States .

https://en.wikipedia.org/wiki/List_of_burn_centers_in_the_United_States
https://en.wikipedia.org/wiki/List_of_burn_centers_in_the_United_States
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FFTHelper<LOG_N-1>::apply(shuffled_vec);

FFTHelper<LOG_N-1>::apply(shuffled_vec + N/2);

constexpr double theta = -2*M_PI / (1<<LOG_N);

double cos_val = cos(theta);

double sin_val = sin(theta);

std::complex<double> first_twiddle{cos_val, sin_val};

std::complex<double> twiddle{1.0, 0.0};

for (unsigned int i=0; i<N/2; ++i) {

// Compute complex_exp once and reuse:

std::complex<double> result_at_i = shuffled_vec[i] +

twiddle*shuffled_vec[i + N/2];

// complex_exp(i+N/2,N) == -complex_exp(i,N):

std::complex<double> result_at_i_plus_n_over_2 = shuffled_vec[i] -

twiddle*shuffled_vec[i + N/2];

shuffled_vec[i] = result_at_i;

shuffled_vec[i + N/2] = result_at_i_plus_n_over_2;

// Update twiddle:

twiddle *= first_twiddle;

}

}

};

template <>

class FFTHelper<0u> {

public:

static void apply(std::complex<double>*shuffled_vec) {

// Do nothing

}

};

template <unsigned int LOG_N>

class FFT {

public:

static void apply(std::complex<double>*dest) {

shuffle(dest, LOG_N);

FFTHelper<LOG_N>::apply(dest);

}

};
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int main() {

const unsigned int LOG_N = 15;

const unsigned int N=1<<LOG_N;

std::complex<double>*x = new std::complex<double>[N];

for (unsigned int i=0; i<N; ++i)

x[i] = std::complex<double>{double(i),0.0};

Clock c;

FFT<LOG_N>::apply(x);

c.ptock();

for (unsigned int i=0; i<std::min(N,5u); ++i)

std::cout << x[i] << " ";

std::cout << "..." << std::endl;

return 0;

}

15.7 Improving numeric stability

Listing 15.6 does have a drawback: the recurrence is seeded by the compu-
tation of cos(theta) and sin(theta) where theta is inversely proportional
to N, the problem size. On large problems, theta ≈ 0. In such a case,
sin(theta) ≈ 0, but cos(theta) ≈ 1. Floating point arithmetic (used
by float and double) is very good at representing values close to 0, but
not at representing values close to 1. For example, double can easily store
1e-20, but will approximate 1 - 1e-20 ≈ 1. As a result, the cos computa-
tion above will be seeded improperly for large problems, and may introduce
substantial numerical error into each twiddle factor used.

We can improve this by once again thinking mathematically: we
will try to do the work in terms of cos(θ) − 1 rather than cos(θ), be-
cause cos(θ) − 1 ≈ 0 when θ ≈ 0. The value cos(θ) − 1 + sin(θ) · j
is the first twiddle minus 1. We already established above that the
next twiddle is the product of the current twiddle and the first twiddle
(by thinking in complex polar terms). twiddle*first twiddle minus 1

= twiddle*first twiddle - twiddle = next twiddle - twiddle. This
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unwanted subtaction needs to be added back in24. Thus, instead of up-
dating by applying twiddle *= first twiddle, we would update by ap-
plying twiddle = twiddle*first twiddle minus 1 + twiddle or equiva-
lently, twiddle += twiddle*first twiddle minus 1.

Computing first twiddle minus 1 requires us to compute cos(θ) − 1;
doing this in the naive manner will still introduce the numerical error from
computing cos(θ), and thus will introduce no improvement. Once again,
we can use the recurrence that squaring a complex polar is the same as

doubling its angle: eθj = (e
θ
2
j)

2
= (cos

(
θ
2

)
+ sin( θ

2
)j)

2
. By expanding the

square, we see that cos(θ) = cos
(
θ
2

)2 − sin
(
θ
2

)2
. Furthermore, for any x,

sin(x)2 + cos(x)2 = 1. Thus,

cos(θ)− 1 = cos

(
θ

2

)2

− sin
(
θ

2

)2

− 1

= cos

(
θ

2

)2

− sin
(
θ

2

)2

− (sin(x)2 + cos(x)2),

for any x. Using x = θ
2

allows us to strategically eliminate all cosines from
the function:
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(
θ

2

)2

− sin
(
θ

2

)2
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.

Listing 15.7: Template-recursive in-place implementation of FFT in C++ us-
ing a numerically stable trigonometric recurrence.

#include "../Clock.hpp"

24Added back in to what? This is a worrying sign we’re getting lost in this sea of math;
addition, subtraction, etc. should always take two arguments and return a value. This is
why the headline “Swedes are more equal” is completely meaningless (equal to what?).25

25“In high school, I was voted ‘most likely to’. At university, I raised awareness (pri-
marily, about making things more equal). But now, I literally can’t even.” Don’t be that
person.
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#include <iostream>

#include <complex>

unsigned int bit_reversed(unsigned int i, unsigned int num_bits) {

unsigned int result = 0;

for (unsigned char b=0; b<num_bits; ++b)

result |= (((i & (1<<b)) >> b) << (num_bits-1)) >> b;

return result;

}

void shuffle(std::complex<double>*vec, const unsigned int log_n) {

for (unsigned int i=0; i<(1<<log_n); ++i) {

unsigned int rev_i = bit_reversed(i, log_n);

if (i < rev_i)

std::swap(vec[i], vec[rev_i]);

}

}

template <unsigned int LOG_N>

class FFTHelper {

public:

static void apply(std::complex<double>*shuffled_vec) {

constexpr unsigned long N=1ul<<LOG_N;

FFTHelper<LOG_N-1>::apply(shuffled_vec);

FFTHelper<LOG_N-1>::apply(shuffled_vec + N/2);

constexpr double theta = -2*M_PI / (1<<LOG_N);

double sin_val = sin(theta);

// Using the numerically unstable recurrence, we see that

// ( cos(theta/2) + sin(theta/2)j ) **2 -->

// ( cos(theta) + sin(theta)j ).

// Thus cos(theta) = cos(theta/2)**2 - sin(theta/2)**2.

// Also, cos(theta/2)**2 + sin(theta/2)**2 = 1.

// subtracting the 1 is the same as subtracting

// cos(theta/2)**2 + sin(theta/2)**2,

// and so from the cos(theta)-1 =

// cos(theta/2)**2 - sin(theta/2)**2 - (cos(theta/2)**2 +

sin(theta/2)**2)

// = -2*sin(theta/2)**2.

double sin_half_angle = sin(theta/2.0);

double cos_val_minus_1 = -2*sin_half_angle*sin_half_angle;

std::complex<double> first_twiddle_minus_1{cos_val_minus_1, sin_val};
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std::complex<double> twiddle{1.0, 0.0};

for (unsigned int i=0; i<N/2; ++i) {

// Compute complex_exp once and reuse:

std::complex<double> result_at_i = shuffled_vec[i] +

twiddle*shuffled_vec[i + N/2];

// complex_exp(i+N/2,N) == -complex_exp(i,N):

std::complex<double> result_at_i_plus_n_over_2 = shuffled_vec[i] -

twiddle*shuffled_vec[i + N/2];

shuffled_vec[i] = result_at_i;

shuffled_vec[i + N/2] = result_at_i_plus_n_over_2;

// Update twiddle:

// twiddle*first_twiddle_minus_1 = twiddle*first_twiddle -

// twiddle. Therefore, add twiddle in to correct for this:

// twiddle = twiddle*first_twiddle_minus_1 + twiddle:

twiddle += twiddle*first_twiddle_minus_1;

}

}

};

template <>

class FFTHelper<0u> {

public:

static void apply(std::complex<double>*shuffled_vec) {

// Do nothing

}

};

template <unsigned int LOG_N>

class FFT {

public:

static void apply(std::complex<double>*dest) {

shuffle(dest, LOG_N);

FFTHelper<LOG_N>::apply(dest);

}

};

int main() {

const unsigned int LOG_N = 15;

const unsigned int N=1<<LOG_N;

std::complex<double>*x = new std::complex<double>[N];
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for (unsigned int i=0; i<N; ++i)

x[i] = std::complex<double>{double(i),0.0};

Clock c;

FFT<LOG_N>::apply(x);

c.ptock();

for (unsigned int i=0; i<std::min(N,5u); ++i)

std::cout << x[i] << " ";

std::cout << "..." << std::endl;

return 0;

}

Thus, we can initialize first twiddle minus 1 without cosine compu-
tation, and can update the twiddle to the next twiddle in a stable manner
(Listing 15.7). The runtime of this method is essentially unchanged (using
only two more addition operations– which can likely be performed simulta-
neously via SIMD– per iteration).

Questions

1. [Level 2] Is it possible to eliminate all trigonometric function calls
made at runtime and also completely avoid any lookup table with size
∈ Θ(n)? How?

2. [Level 3] Write a non-recursive FFT (using for loops instead of recur-
sion and instead of template recursion). How does the runtime compare
to the template-recursive FFT from Listing 15.5?

Projects

1. [Level 2] Make the most efficient FFT you can (using multithreading,
SIMD intrinsics, DMA (e.g., to quickly load a lookup table of trigono-
metric constants on the fly), and any other trick mentioned in this
textbook).



Appendix A

Proof of Unique Inverse
Modulo a Prime

A.1 Solving ab ≡ c (mod m)

Given a and m (both in Z), to solve ab ≡ c (mod m) for x ∈ Z, it is sufficient
to find a−1 such that a−1a ≡ 1 (mod m), and then multiply:

ab ≡ c (mod m)

a−1ab ≡ a−1c (mod m)

b ≡ a−1c (mod m)

Note that this solution produces a congruence (i.e., ≡) rather than equal-
ity (i.e., =), and so given one value of b that satisfies ab ≡ c (mod m), then
b′ = b + m will also satisfy (and inductively, b′ = b + qm where q ∈ Z also
satisfies).

To find a−1 such that a−1a ≡ 1 (mod m) (note that this is not equivalent
to 1

a
, because that value is not necessarily in Z), we consider the remainder:

if a−1a ≡ 1 (mod m), then we can write a−1a (which is the product of two
integers, and therefore an integer) as a−1a = qm+ 1, meaning that when we
divide a−1a by m, the result is a whole part q plus the remainder 1

m
.

265



266 APPENDIX A. UNIQUE PRIME INVERSE

A.2 Bézout identity

We will first introduce the Bézout Identity and then later use that to prove
the existence of a−1 under certain conditions.

Bézout Identity: Given a and b (both ∈ Z), then there exist x and
y (both ∈ Z) such that ax+ by = d, where d = gcd(a, b).

First, consider the set of all positive integer combinations: S = {as+ bt :
as + bt > 0, ∀s, t ∈ Z}. Let d = min(S); this minimum will exist because
S is a nonempty integer set (even when a and b are not guaranteed to be
nonnegative, we can simply choose s and t to match their respective signs,
ensuring a positive result), and is bounded below by 0, and therefore it has
a minumum.

Now we can show that d divides a:
Clearly there exist q and r such that a = qd + r (the remainder form

of a when dividing by d). Note that since r is a remainder, it must be
in {0, 1, . . . d − 1} (i.e., when dividing by 5, the remainder must be in
{0, 1, 2, 3, 4}).

First we observe that r is of the form ax + by: r = a− qd, which we see
equals a(1− s) + bt by expanding d = as+ bt.

Now will now try to show that r = 0 (equivalent to showing that
d divides a, because we prove that dividing produces a remainder
equal to zero). Suppose r 6= 0 (and because r ∈ {0, 1, . . . d − 1}, r must
be > 0). If r > 0 and r is of the form r = ax + by, then r ∈ S. But since
r ∈ {0, 1, . . . d−1}, then r < d, so we have proven that there is a value r < d
in S, which contradicts our definition of d = min(S). This contradiction
negates our supposition that r 6= 0; now we know that r = 0. So d divides
a (this is true w.l.o.g., so the same can be shown for b). Therefore, d is a
common divisor of both a and b.

Now we will show that it is the greatest common divisor d =
gcd(a, b). Suppose any other value c also divides a and b (a

c
∈ Z and b

c
∈ Z).

Since d is of the form d = ax + by (for some unknown integers x and y),
then c must divide d: d

c
= a

c
x+ b

c
y ∈ Z. Thus we can see that d includes all

common factors of a and b, and therefore is the greatest common divisor.
Therefore, when we have integers a and b, and their greatest common

divisor d = gcd(a, b), then there exist some integers x and y that satisfy
ax+ by = d.
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A.3 Applying Bézout Identity to Prove Exis-

tence of a−1

Clearly a−1a = qm+1 can be rewritten as a−1a−qm = 1, which is equivalent
to a−1a + q′m = 1 where q′ = −q. Using the Bézout Identity, we can
guarantee that integers a−1 and q′ exist for which a−1a+ q′m = 1 whenever
1 = gcd(a,m). If we choose a prime value of m, we are guaranteed that the
greatest common divisor gcd(a,m) will be one whenever a ∈ {0, 1, . . .m− 1}
(this is the definition of prime: the only way to have a gcd(a,m) 6= 1 when
m is prime would be to let a = qm for some integer q). Therefore, a prime
table size m will allow us to invoke the Bézout Identity and prove that an
integer a−1 exists.1

A.4 Proving uniqueness of a−1

Here we prove the uniqueness of a−1 (mod m) whenever m is prime using
a contradiction argument. Suppose there exist two integers x and y such
that x 6≡ y (mod m) but where ax ≡ ay (mod m). In other words, if x
was a valid inverse of a using modulo m), then y would likewise be a valid
inverse, proving the inverse x = a−1 is not unique. We can subtract across
to see that ax− ay ≡ 0 (mod m) and thus a(x− y) ≡ 0 (mod m), meaning
that together a and x − y compose the multi-set all of the prime factors of
m (the multi-set of prime factors is of course m, since m is prime). If, as
above, a ∈ {0, 1, . . .m − 1}, then it cannot share any common factors with
m (again, the definition of primality means not sharing any factors with
any natural numbers other than 1). Thus x − y must contain the prime
factors of m, meaning x − y = qm for some integer q. This indicates that
x− y (mod m) = 0, or equivalently that x ≡ y (mod m) (contradicting our
definition above). Therefore, the inverse a−1 has no equivalents modulo m.

A.5 Summary

We see that when we consider a prime modulo m and values a ∈ {0, 1, . . .m−
1}, then a−1 (mod m) exists and is unique. This means that we can perform
a division-like operation on congruences modulo a prime m. Note that this

1“Aghhgh! This man’s appendix is about to burst!” Just hold on a little further. . .
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description does not show you how to find the inverse a−1 (mod m), rather
it shows that it exists and is unique, which is enough to prove that a · b ≡
c (mod p) has a unique solution for b ∈ {1, 2, . . . p−1} whenever a 6= 0. Thus
the strategy in Chapter 8 is a valid universal hash.2

2You did it! The Throne Room and End Title.mp4
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