HW: Core Proofs

Copyright Oliver Serang, 2018
University of Montana Department of Computer Science

1. You are sorting an array of \(n \) objects. The objects only support the <
operator and the == operator. Prove that any algorithm that sorts this
array is \(\Omega(n \log(n)) \).

There are \(n! \) possible arrangements of the array. There are \(\log(n!) \) comparisons needed to sort it.

\[
\log(n!) = \log(n) + \log(n-1) + \cdots + \log(1) > \log(n) + \log(n-1) + \cdots + \log(\frac{n}{2}) + 0 + 0 + \cdots + 0
\]

\[= \frac{n}{2} \log(\frac{n}{2}) = \frac{n}{2} \left(\log(n) - \log(2) \right) = \Omega(n \log(n))
\]

2. You are constructing a suffix tree on a string of length \(n \). Assume that
you have access to a fast fastscan routine. Prove that the runtime of
all slowscan calls will be \(\in O(n) \).

Given \(|head_{p-1}| = k, |head_p| > k-1 \) via suffix lemma.

Thus fastscan descends \(k-1 \) characters and slowscan
descends \(|head_p| - (|head_{p-1}| - 1) \) in that iteration.

Thus, over every iteration the cost is

\[\in \sum_{i} |head_p| - |head_{p-1}| + 1\]

\[= |head_n| - |head_{n-1}| + 1 + |head_{n-1}| - |head_{n-2}| + 1 \cdots\]

\[= |head_n| - |head_0| + n \]

\(\in O(n) \)
3. You are solving TSP on a metric graph. Prove that you can achieve a 2-approximation using the MST.

\[G = \text{graph} \]
\[p^* = \arg \min_{p \in \text{paths}(G)} \left(\text{cost}(p) \right) \]
\[T^* = \arg \min_{T \in \text{tree}(G)} \left(\text{Cost}(T) \right) \]

\[\text{Cost}(T^*) \leq \text{cost}(p^*) \]
// paths harder than trees

\[\text{Cost}(p^*) \leq 2 \cdot \text{cost}(T^*) \]
// via rewiring edges

\[\text{Cost}(p^{(m)}) \leq \text{cost}(p^*) \]
// via reducing \(b_1 \geq b_2 \) type edges with \(b_1 \geq b_2 \) by metric property

\[\text{Cost}(p^{(m)}) \leq \text{cost}(p^*) \leq 2 \cdot \text{Cost}(T^*) \leq 2 \cdot \text{Cost}(p^*) \]